1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
bearhunter [10]
3 years ago
8

When is a zero not significant?

Physics
2 answers:
maria [59]3 years ago
8 0

Answer:

Not between significant digits.

Explanation:

A zero not significant when it's not between significant digits.

tigry1 [53]3 years ago
5 0

Answer:

Zero are not significant when indicating the decimal point position

Explanation:

The number zero has a special meaning with respect to its meaning, when it is placed to the right as a decimal, its meanings so precision measurements were made, for example 10 cm and 10.0 cm, the first one has an accuracy of one centimeter and the second has an accuracy of 0.1 cm.

In the case of being placed to the left of all numbers, the meaning is to indicate where the decimal point goes, but it does not give information about the accuracy of the measurement, in this second case the zeros are not significant, for example: 0.1 0.0001 in these two cases are not significant

You might be interested in
In a game of pool, a cue ball rolls without slipping toward the stationary eight ball with a momentum of 0.23 kg. After the two
IrinaVladis [17]

This question involves the concepts of the law of conservation of momentum.

The magnitude of the final momentum of the eight ball is "0.22 N.s".

According to the law of conservation of momentum:

P_{i1}+P_{i2}=P_{f1}+P_{f2}

where,

P_{i1} = initial momentum of the cue ball = 0.23 N.s

P_{i2} = initial momentum of the eight ball = 0 N.s (since ball is initially at rest)

P_{f1} = final momentum of the cue ball = 0.01 N.s

P_{f2} = final momentum of the eight ball = ?

Therefore,

0.23\ N.s + 0\N.s = 0.01\ N.s+P_{f2}\\\\P_{f2} = 0.22\ N.s

Learn more about the law of conservation of momentum here:

brainly.com/question/1113396?referrer=searchResults

3 0
2 years ago
In the year 2081 in a shipping port on the moon, workers for Ore-Space, Inc., hoist a 500.0 kg hunk of anorthosite moon rock by
Naddik [55]

Answer:

2,800 n

Explanation:

hope this helps, have a nice day/night! :D

7 0
2 years ago
Recall that the spring constant is inversely proportional to the number of coils in the spring, or that shorter springs equate t
ruslelena [56]

Answer:

x_1= 0.0425m

Explanation:

Using the tension in the spring and the force of the tension can by describe by

T = kx

, T = mg

Therefore:

m*g = k*x

With two springs, let, T1 be the tension in each spring,  x1 be the extension of each spring.  The spring constant of each spring is 2k so:

T_1 = 2k*x_1

2T_1 = m*g=4k x_1

Solve to x1

x_1=\frac{m*g}{4k}

x_1=\frac{k*x}{4*k}

x_1=\frac{x}{4}

x_1 = 0.170 / 4

x_1= 0.0425m

7 0
3 years ago
What is the wavelength associated with 0.113kg ball traveling with velocity of 43 m/s?
lesya [120]

Answer:

2.73×10¯³⁴ m.

Explanation:

The following data were obtained from the question:

Mass (m) = 0.113 Kg

Velocity (v) = 43 m/s

Wavelength (λ) =?

Next, we shall determine the energy of the ball. This can be obtained as follow:

Mass (m) = 0.113 Kg

Velocity (v) = 43 m/s

Energy (E) =?

E = ½m²

E = ½ × 0.113 × 43²

E = 0.0565 × 1849

E = 104.4685 J

Next, we shall determine the frequency. This can be obtained as follow:

Energy (E) = 104.4685 J

Planck's constant (h) = 6.63×10¯³⁴ Js

Frequency (f) =?

E = hf

104.4685 = 6.63×10¯³⁴ × f

Divide both side by 6.63×10¯³⁴

f = 104.4685 / 6.63×10¯³⁴

f = 15.76×10³⁴ Hz

Finally, we shall determine the wavelength of the ball. This can be obtained as follow:

Velocity (v) = 43 m/s

Frequency (f) = 15.76×10³⁴ Hz

Wavelength (λ) =?

v = λf

43 = λ × 15.76×10³⁴

Divide both side by 15.76×10³⁴

λ = 43 / 15.76×10³⁴

λ = 2.73×10¯³⁴ m

Therefore, the wavelength of the ball is 2.73×10¯³⁴ m.

8 0
3 years ago
Write a list of at least five scientific methods.
kolbaska11 [484]
1- You should always have a question for your experiment.
2- You need to conduct background research. It helps to write down your sources so you can cite your references. 
3- Propose a hypothesis (educated guess on what you believe the outcome of the experiment will be)
4- Design and perform an experiment to test your hypothesis (include independent and dependent variable)
5- Record observations and analyze what the data means.
6- Conclude whether you need to accept or reject your hypothesis, which accepting means your hypothesis was right and rejected is if it was wrong. 
3 0
3 years ago
Other questions:
  • When using charles law the units of temperature?
    5·1 answer
  • [Please help fast! Offering 100 points if it works!}
    13·2 answers
  • A batter hits a fly ball into the outfield. The
    10·2 answers
  • Suppose an earthquake occurs on an imaginary planet. Scientists on the other side of the planet detect primary waves but not sec
    11·1 answer
  • An apple falls because of the gravitational attraction to earth. how does the gravitational attraction of earth to the apple com
    12·1 answer
  • Help me with this question please
    6·2 answers
  • The other name for 'net force' is 'unbalanced force'. What is the name of the force that could be applied to an object that woul
    6·1 answer
  • wo ships, one 200200 metres in length and the other 100100 metres in length, travel at constant but different speeds. When trave
    9·1 answer
  • Describe how an oscilloscope should be used to measure the frequency of the sound wave from the sonometer
    9·1 answer
  • You can use a system of equations to graph and solve the polynomial equation 3 x cubed + x = 2 x squared + 1. Which statement is
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!