This question involves the concepts of the law of conservation of momentum.
The magnitude of the final momentum of the eight ball is "0.22 N.s".
According to the law of conservation of momentum:

where,
= initial momentum of the cue ball = 0.23 N.s
= initial momentum of the eight ball = 0 N.s (since ball is initially at rest)
= final momentum of the cue ball = 0.01 N.s
= final momentum of the eight ball = ?
Therefore,

Learn more about the law of conservation of momentum here:
brainly.com/question/1113396?referrer=searchResults
Answer:
2,800 n
Explanation:
hope this helps, have a nice day/night! :D
Answer:

Explanation:
Using the tension in the spring and the force of the tension can by describe by
T = kx
, T = mg
Therefore:

With two springs, let, T1 be the tension in each spring, x1 be the extension of each spring. The spring constant of each spring is 2k so:


Solve to x1





Answer:
2.73×10¯³⁴ m.
Explanation:
The following data were obtained from the question:
Mass (m) = 0.113 Kg
Velocity (v) = 43 m/s
Wavelength (λ) =?
Next, we shall determine the energy of the ball. This can be obtained as follow:
Mass (m) = 0.113 Kg
Velocity (v) = 43 m/s
Energy (E) =?
E = ½m²
E = ½ × 0.113 × 43²
E = 0.0565 × 1849
E = 104.4685 J
Next, we shall determine the frequency. This can be obtained as follow:
Energy (E) = 104.4685 J
Planck's constant (h) = 6.63×10¯³⁴ Js
Frequency (f) =?
E = hf
104.4685 = 6.63×10¯³⁴ × f
Divide both side by 6.63×10¯³⁴
f = 104.4685 / 6.63×10¯³⁴
f = 15.76×10³⁴ Hz
Finally, we shall determine the wavelength of the ball. This can be obtained as follow:
Velocity (v) = 43 m/s
Frequency (f) = 15.76×10³⁴ Hz
Wavelength (λ) =?
v = λf
43 = λ × 15.76×10³⁴
Divide both side by 15.76×10³⁴
λ = 43 / 15.76×10³⁴
λ = 2.73×10¯³⁴ m
Therefore, the wavelength of the ball is 2.73×10¯³⁴ m.
1- You should always have a question for your experiment.
2- You need to conduct background research. It helps to write down your sources so you can cite your references.
3- Propose a hypothesis (educated guess on what you believe the outcome of the experiment will be)
4- Design and perform an experiment to test your hypothesis (include independent and dependent variable)
5- Record observations and analyze what the data means.
6- Conclude whether you need to accept or reject your hypothesis, which accepting means your hypothesis was right and rejected is if it was wrong.