Answer:
3683.67 m
Explanation:
Formula for maximum height of projectile is given by the equation;
h = u²/2g
Where u is initial velocity and g is acceleration due to gravity
We are given u = 190 m/s
Thus;
h = 190²/9.8
h = 36100/9.8
h = 3683.67 m
Answer:
Well,
Explanation:
In this image, the thermal energy could be going both in an upwards and downwards direction. The chicken passes thermal energy to the salad under it. But at the same time, it is releasing smoke upwards, meaning it is also releasing thermal energy upwards.
<h2>#learnwithbrainly</h2>
Answer:
t=4.86s
Explanation:
To find the wavelength you use the following formula:

v: speed of sound = 343m/s
f: frequency = 400Hz
λ: wavelength of the sound
By doing λ the subject of the formula and replacing the values of f and v you obtain:

Now, to calculate the time that sound takes to reach the last row you use:

t: time
d: distance to the last row = 1947m

hence, the time is 4.86s
Answer:
The magnitude and direction of electric field midway between these two charges is
along AB.
Explanation:
Given that,
First charge 
second charge 
Distance = 20 cm
We need to calculate the electric field
For first charge,
Using formula of electric field

Put the valueinto the formula


Direction of electric field along AB
We need to calculate the electric field
For second charge,
Using formula of electric field

Put the valueinto the formula


Direction of electric field along AO
We need to calculate the net electric field at midpoint



Direction of net electric field along AB
Hence, The magnitude and direction of electric field midway between these two charges is
along AB.
Answer:
v = 45.37 m/s
Explanation:
Given,
angle of inclination = 8.0°
Vertical height, H = 105 m
Initial K.E. = 0 J
Initial P.E. = m g H
Final PE = 0 J
Final KE = 
Using Conservation of energy




v = 45.37 m/s
Hence, speed of the skier at the bottom is equal to v = 45.37 m/s