Answer:
The resulting velocity of the ball after it hits the racket was of V= 51.6 m/s
Explanation:
m= 55.6 g = 0.0556 kg
t= 2.8 ms = 2.8 * 10⁻³ s
F= 1290 N/ms * t - 330 N/ms² * t²
F= 1024.8 N
F*t= m * V
V= F*t/m
V= 51.6 m/s
Answer: 2, the nuclear strong force drops to practically nothing at large distances.
Explanation: The protons and neutrons in the nucleus share subatomic particles called pions. This exchange is what keeps the protons and neutrons stuck together in the nucleus. Despite the strong force being the strongest force, it has a very small range. This is because pions have very short lifespans. So, the strong force would have literally no effect at large distances.
Hope that helped! :)
Answer:
Explanation:
circumference of the tyre = 2πr = 2 x 3.14 x 0.26 = 1.6328m
76000km = 76000000m
no of revolutions required
= 76000000/1.6328 = 46546 revolutions.
Answer:
J = 1800 kg-m/s
Explanation:
Given that,
Mass of a boy, m = 150 kg
Initial velocity of a boy, u = 12 m/s
Finally, it stops, v = 0
We need to find the impulse is required to produce this change in momentum. We know that impulse is equal to the change in momentum. So,

So, the impulse is equal to 1800 kg-m/s