Newton's first law of motion states that. an object on the rest or motion is stay the same unless external force applied on it.
1) the weight of an object at Earth's surface is given by

, where m is the mass of the object and

is the gravitational acceleration at Earth's surface. The book in this problem has a mass of m=2.2 kg, therefore its weight is

2) On Mars, the value of the gravitational acceleration is different:

. The formula to calculate the weight of the object on Mars is still the same, but we have to use this value of g instead of the one on Earth:

3) The weight of the textbook on Venus is F=19.6 N. We already know its mass (m=2.2 kg), therefore by re-arranging the usual equation F=mg, we can find the value of the gravitational acceleration g on Venus:

4) The mass of the pair of running shoes is m=0.5 kg. Their weight is F=11.55 N, therefore we can find the value of the gravitational acceleration g on Jupiter by re-arranging the usual equation F=mg:

5) The weight of the pair of shoes of m=0.5 kg on Pluto is F=0.3 N. As in the previous step, we can calculate the strength of the gravity g on Pluto as

<span>6) On Earth, the gravity acceleration is </span>

<span>. The mass of the pair of shoes is m=0.5 kg, therefore their weight on Earth is
</span>

<span>
</span>
Adults. 18years olds and older were affected because back then only 21 years olds and older could vote but the 26th amendment changed that
Explanation:
We define force as the product of mass and acceleration.
F = ma
It means that the object has zero net force when it is in rest state or it when it has no acceleration. However in the case of liquids. just like the above mentioned case, the water is at rest but it is still exerting a pressure on the walls of the swimming pool. That pressure exerted by the liquids in their rest state is known as hydro static force.
Given Data:
Width of the pool = w = 50 ft
length of the pool = l= 100 ft
Depth of the shallow end = h(s) = 4 ft
Depth of the deep end = h(d) = 10 ft.
weight density = ρg = 62.5 lb/ft
Solution:
a) Force on a shallow end:



b) Force on deep end:



c) Force on one of the sides:
As it is mentioned in the question that the bottom of the swimming pool is an inclined plane so sum of the forces on the rectangular part and triangular part will give us the force on one of the sides of the pool.
1) Force on the Rectangular part:




2) Force on the triangular part:

here
h = h(d) - h(s)
h = 10-4
h = 6ft



now add both of these forces,
F = 25000lb + 150000lb
F = 175000lb
d) Force on the bottom:


