Answer:
A) 1.5 v
B) Top plate is at higher voltage than the bottom plate
Explanation:
Battery value set between 0.0 V and 1.5 V
a) The potential difference between the plates
Δ V = V1( potential at top plate) - V2( potential at lower plate )
potential at top plate = 1.5 V
potential at lower plate = 0.0 V
hence potential difference = 1.5 V
b ) The top plate is always connected to the positive terminal of the DC source ( which is at a higher potential )while the bottom plate is connected to the negative terminal of the DC source ( which is at a lower potential )
hence the Top plate is at higher voltage than the bottom plate
If I am to understand this question correctly this is what asks you:
If a person is riding a motorized tricycle how much work do they do?
You may ask yourself, why did I only use part of the question. Simple, the rest is not relevant to what is being asked. The weight, speed, and distance wont affect the person riding any <em><u>motorized vehicle</u></em> other than the time it takes to get from one place to another.
So to answer this question I would say:
Not much, all they really have to do is to steer and set the motorized tricycle to cruise control. Just like any rode certified vehicle.
If you have any questions about my answer please let me know and I will be happy to clarify any misunderstandings. Thanks and have a great day!
This is a question that would have literally have taken two seconds to look up on google but the answer is 1.88 years.
Explanation:
It is given that,
Average power per unit mass generated by Lance, 

(a) Distance to cover race, 
Average speed of the person, v = 11 m/s
If t is the time taken to cover the race.


t = 14545.46 s
Let W is the work done. The relation between the work done and the power is given by :



W = 7090911.75 J
(b) Since, 
So, in 7090911.75 J, 
W = 1694.01 J
Hence, this is the required solution.
Answer:
the brightest found are Blue - White with
Explanation:
The energy emission of objects increases with their temperature, specifically Wien described the process in an expression
T = 2,898 10⁻³
With this expression we can find the temperature of the stars by the color they emit.
Specifically the Sun has a color of 550 nm which corresponds to 5400K
bright stars have a BLUE color corresponding to 7500K
the brightest found are Blue - White with a temperature of 20000K