1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ValentinkaMS [17]
3 years ago
14

Two stationary point charges of 3.00 nC and 2.00 nC are separated by a distance of 50.0 cm. An electron is released from rest at

a point midway between the charges and moves along the line connecting them. What is the electric potential energy of the electron when it is1. at the midpoint?2. 10.0 cm from the 3.00 nC charge?I tried to do the first part of this problem by observing another example, but I still got it all wrong. Could you please show me the step-by-steps of how to do this problem and how you came up with all the equations?
Physics
1 answer:
kap26 [50]3 years ago
5 0

Answer:

1)  U₁ = -2.8648 10⁻¹⁵ J  2)   U₂ = 1.15 10⁻¹⁶ J

Explanation:

The electrical potential for point charges is given by the formula

          V = k q / r

Where k is the Coulomb constant that value 8.99 109 Nm2 / C2, q the load and r the distance to the point of interest. Since the potential is a scalar when there are several charges, we can add the potentials

        V = V₁ + V₂

The electric potential energy is the electric potential for the test load.

        U = k q₁ q₂ / r₁₂

Where q₁ and q₂ are the charge and the test charge and r₁₂ is the distance between these two charges, you determined that the electric potential is also a scalar

Let's apply this last equation to our case.

The data they give are the charges

       q₁ = 3.00 nc = 3.00 10⁻⁹ C

       q₂ = 2.00 nC = 2.00 10⁻⁹ C

       d = 50.0 cm = 50.0 10⁻² m

Case 1

The test charge is an electron

       q3 = e = - 1.6 10-19 C

We look for the potential electric energy at the midpoint

         x = d / 2 = 25.0 10⁻² m

         U = U₁₃ + U₂₃

         U = k q₁q₃ / r₁₃ + k q₂q₃ / r₂₃

In this case

         r₁₃ = r₂₃ = r = 25.0 10⁻² m

         U₁ = k / r q₃ (q₁ + q₂)

Let's calculate

         U₁ = 8.99 10⁹ (-1.6 10⁻¹⁹) / 25.0 10⁻² (3.00 10⁻⁹ + 2.00 10⁻⁹)

         U₁ = -2.8648 10⁻¹⁵ J

Case 2

Distance

          r₁₃ = 10.0 cm = 10.0 10⁻² m

The other distance r2.3 is measured from charge 2

         r₂₃ = d -r₁₃

         r₂₃ = 50 - 10 = 40 cm = 40.0 10⁻² m

Let's write the formula

        U₂ = k q₃ (q₁₃ / r₁₃ + q₂₃ / r₂₃)

        U₂ = 8.99 10⁹ (-1.6 10⁻¹⁹) (3.00 10⁻⁹ / 10.0 10⁻² + ​​2.00 10⁻⁹ / 40.0 10⁻²)

        U₂ = 14,384 10⁻¹⁰ (0.3 10⁻⁷ + 0.5 10⁻⁷)

        U₂ = 11.5072 10⁻¹⁷ J

        U₂ = 1.15 10⁻¹⁶ J

You might be interested in
If an object is projected upward from ground level with an initial velocity of 144144 ft per​ sec, then its height in feet after
Liula [17]

Answer:

4.5 s, 324 ft

Explanation:

The object is projected upward with an initial velocity of

v_0 = 144 ft/s

The equation that describes its height at time t is

s(t) = -16t^2 + 144 t (1)

where t, the time, is measured in seconds.

In order to find the time it takes for the object to reach the maximum height, we must find an expression for its velocity at time t, which can be found by calculating the derivative of the position, s(t):

v(t) = s'(t) = -32t +144 (2)

At the maximum heigth, the vertical velocity is zero:

v(t) = 0

Substituting into the equation above, we find the corresponding time at which the object reaches the maximum height:

0=-32t+144\\t=\frac{144}{32}=4.5 s

And by substituting this value into eq.(1), we also find the maximum height:

s(t) = -16(4.5)^2+144(4.5)=324 ft

3 0
3 years ago
At a certain location, wind is blowing steadily at 9 m/s. Determine the mechanical energy of air per unit mass and the power gen
Misha Larkins [42]

Answer:

  1. The specific mechanical energy of the air in the specific location is 40.5 J/kg.
  2. The power generation potential of the wind turbine at such place is of 2290 kW
  3. The actual electric power generation is 687 kW

Explanation:

  1. The mechanical energy of the air per unit mass is the specific kinetic energy of the air that is calculated using: \frac{1}{2} V^2 where V is the velocity of the air.
  2. The specific kinetic energy would be: \frac{1}{2}(9\frac{m}{s})^2=40.5\frac{m^2}{s^2}=40.5\frac{m^2 }{s^2}\frac{kg}{kg}=40.5\frac{N*m }{kg}=40.5\frac{J}{kg}.
  3. The power generation of the wind turbine would be obtained from the product of the mechanical energy of the air times the mass flow that moves the turbine.
  4. To calculate mass flow it is required first to calculate the volumetric flow. To calculate the volumetric flow the next expression would be: \frac{V\pi D_{blade}^2}{4} =\frac{9\frac{m}{s}\pi(80m)^2}{4} =45238.9\frac{m^3}{s}
  5. Then the mass flow is obtain from the volumetric flow times the density of the air: m_{flow}=1.25\frac{kg}{m^3}45238.9\frac{m^3}{s}=56548.7\frac{kg}{s}
  6. Then, the Power generation potential is: 40.5\frac{J}{kg} 56548.7\frac{kg}{s} =2290221W=2290.2kW
  7. The actual electric power generation is calculated using the definition of efficiency:\eta=\frac{E_P}{E_I}}, where η is the efficiency, E_P is the energy actually produced and, E_I is the energy input. Then solving for the energy produced: E_P=\eta*E_I=0.30*2290kW=687kW
6 0
3 years ago
Help please 20 points ? ASAP
KengaRu [80]

Answer:

21: Mass

22: Unbalanced Force

23: Friction

24: Balanced

Explanation:

3 0
3 years ago
A car which is traveling at a velocity of 15 m/s undergoes an acceleration of 6.5 m/s2 over a distance of 340 m. How fast is it
fomenos

Answer:68.15m/s

Explanation:

<u><em>Given: </em></u>

v₁=15m/s

a=6.5m/s²

v₁=?

x=340m

<u><em>Formula:</em></u>

v₁²=v₁²+2a (x)

<u>Set up:</u>

=\sqrt{15m/s} ^{2} +2(6.5m/s^2)(340m)

<h2><u><em>Solution:</em></u></h2><h2><u><em>68.15m/s</em></u></h2>

<u />

6 0
3 years ago
When visiting some countries, you may see a person balancing a load on the head. Explain why the center of mass of the load need
Vinvika [58]

Explanation:

If the center of the load is directly above the vertebrae, there is no torque in the system. This is a good thing so that the vertebrae are not put out of alignment over time. (Of course, this still doesn't prevent compression of the vertebrae over time, which is a possibility.)

3 0
4 years ago
Other questions:
  • A football quarterback runs 15.0 m straight down the playing field in 2.50 s. he is then hit and pushed 3.00 m straight backward
    7·1 answer
  • The net Forward force on the propeller of a 3.2 KG model airplane is 7.0 N. What is the acceleration of the airplanes
    14·1 answer
  • A 39.7 n object is in free fall. what is the magnitude of the net force which acts on the object? answer in units of n.
    15·1 answer
  • You find yourself at a lever. A runaway trolley approaches five people who are tied to a set of tracks. Pulling the lever will d
    14·1 answer
  • A person is listening to a tone of 500 Hz sitting from a distance of 450 m from the source of the sound. What is the time interv
    8·1 answer
  • What is the definition of Physics?​
    13·2 answers
  • A student from Sidney, Australia compares the distance he obtained from the 1-st spark mark to the 25-th spark mark, with the si
    13·1 answer
  • Which property of a substance is not affected by physical changes?
    10·1 answer
  • Determinar el flujo de calor a través del piso de losa cuyas medidas 3 X 5 cm y temperaturas superficiales son -20 ºC y 40 ºC, l
    13·1 answer
  • 18. Un avión de rescate de animales que vuela hacia el este a 36.0 m/s deja caer una paca de
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!