1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ValentinkaMS [17]
3 years ago
14

Two stationary point charges of 3.00 nC and 2.00 nC are separated by a distance of 50.0 cm. An electron is released from rest at

a point midway between the charges and moves along the line connecting them. What is the electric potential energy of the electron when it is1. at the midpoint?2. 10.0 cm from the 3.00 nC charge?I tried to do the first part of this problem by observing another example, but I still got it all wrong. Could you please show me the step-by-steps of how to do this problem and how you came up with all the equations?
Physics
1 answer:
kap26 [50]3 years ago
5 0

Answer:

1)  U₁ = -2.8648 10⁻¹⁵ J  2)   U₂ = 1.15 10⁻¹⁶ J

Explanation:

The electrical potential for point charges is given by the formula

          V = k q / r

Where k is the Coulomb constant that value 8.99 109 Nm2 / C2, q the load and r the distance to the point of interest. Since the potential is a scalar when there are several charges, we can add the potentials

        V = V₁ + V₂

The electric potential energy is the electric potential for the test load.

        U = k q₁ q₂ / r₁₂

Where q₁ and q₂ are the charge and the test charge and r₁₂ is the distance between these two charges, you determined that the electric potential is also a scalar

Let's apply this last equation to our case.

The data they give are the charges

       q₁ = 3.00 nc = 3.00 10⁻⁹ C

       q₂ = 2.00 nC = 2.00 10⁻⁹ C

       d = 50.0 cm = 50.0 10⁻² m

Case 1

The test charge is an electron

       q3 = e = - 1.6 10-19 C

We look for the potential electric energy at the midpoint

         x = d / 2 = 25.0 10⁻² m

         U = U₁₃ + U₂₃

         U = k q₁q₃ / r₁₃ + k q₂q₃ / r₂₃

In this case

         r₁₃ = r₂₃ = r = 25.0 10⁻² m

         U₁ = k / r q₃ (q₁ + q₂)

Let's calculate

         U₁ = 8.99 10⁹ (-1.6 10⁻¹⁹) / 25.0 10⁻² (3.00 10⁻⁹ + 2.00 10⁻⁹)

         U₁ = -2.8648 10⁻¹⁵ J

Case 2

Distance

          r₁₃ = 10.0 cm = 10.0 10⁻² m

The other distance r2.3 is measured from charge 2

         r₂₃ = d -r₁₃

         r₂₃ = 50 - 10 = 40 cm = 40.0 10⁻² m

Let's write the formula

        U₂ = k q₃ (q₁₃ / r₁₃ + q₂₃ / r₂₃)

        U₂ = 8.99 10⁹ (-1.6 10⁻¹⁹) (3.00 10⁻⁹ / 10.0 10⁻² + ​​2.00 10⁻⁹ / 40.0 10⁻²)

        U₂ = 14,384 10⁻¹⁰ (0.3 10⁻⁷ + 0.5 10⁻⁷)

        U₂ = 11.5072 10⁻¹⁷ J

        U₂ = 1.15 10⁻¹⁶ J

You might be interested in
A string that passes over a pulley has a 0.341 kg mass attached to one end and a 0.625 kg mass attached to the other end. The pu
dalvyx [7]

Answer:

The frictional torque is \tau  = 0.2505 \ N \cdot m

Explanation:

From the question we are told that

   The mass attached to one end the string is m_1 =  0.341 \ kg

   The mass attached to the other end of the string is  m_2 =  0.625 \ kg

    The radius of the disk is  r = 9.00 \ cm  = 0.09 \ m

At equilibrium the tension on the string due to the first mass is mathematically represented as

      T_1 =  m_1 *  g

substituting values

      T_1 =  0.341 * 9.8

      T_1 =  3.342 \ N

At equilibrium the tension on the string due to the  mass is mathematically represented as

      T_2 =  m_2 *  g

     T_2 = 0.625 * 9.8

      T_2 = 6.125 \ N

The  frictional torque that must be exerted is mathematically represented as

      \tau  =  (T_2 * r ) - (T_1 * r )

substituting values  

     \tau  =  ( 6.125 * 0.09 ) - (3.342  * 0.09 )

     \tau  = 0.2505 \ N \cdot m

5 0
3 years ago
Convert 3.45inches into km
Katyanochek1 [597]

Answer:

can someone please answer this i need this for a mastery test aswell

Explanation:

it would be very appreciated

8 0
3 years ago
Read 2 more answers
A police officer at rest at side of highway notices speeder moving at 62 km/h along road.when speeder passes ,officer accelerate
Korolek [52]

To answer the following questions for this specific problem:

a. 11.48 secs

b. Vp = a*t*3.6 = 3*11.48*3.6 = 124.0 km/h

<span>c. 9.1 secs. </span>

I am hoping that this answer has satisfied your query about and it will be able to help you.

4 0
3 years ago
Read 2 more answers
h(t) = - 16t2 + 64t + 112 where t is the time in seconds. After how many seconds does the arrow reach it maximum height? Round t
laila [671]

Answer:

2 seconds

Explanation:

The function of height is given in form of time. For maximum height, we need to use the concept of maxima and minima of differentiation.

h(t)=-16t^{2}+64t+112

Differentiate with respect to t on both the sides, we get

\frac{dh}{dt}=-32t+64

For maxima and minima, put the value of dh / dt is equal to zero. we get

- 32 t + 64 = 0

t = 2 second

Thus, the arrow reaches at maximum height after 2 seconds.

8 0
3 years ago
A baby carriage is rolling down a hill at 18 m/s. If the carriage has 90J of kinetic energy, what is the mass of the carriage? a
grin007 [14]

Answer:

why did the parents let go of their child-

Explanation:

A 5 kg, because 90 / 18 is 5

6 0
3 years ago
Read 2 more answers
Other questions:
  • A large rock of mass me materializes stationary at the orbit of Mercury and falls into the sun. Itf the Sun has a mass ms and ra
    14·1 answer
  • Choose one of the six fitness related components that are used in gymnastics.
    13·1 answer
  • Which of the following is an example of kinetic energy?
    8·1 answer
  • justin and his friends are on the football team. they consider skateboarders at their school to be an out-group. what does this
    11·2 answers
  • If two objects with static charge are attracted what do you know about them?
    9·1 answer
  • Can we use a copper wire instead of eureka wire
    11·1 answer
  • Help plsss i need #1
    14·1 answer
  • 4. Anaerobic exercise helps type 2 diabetes.<br> a. True<br> b. False
    5·1 answer
  • what is the amplitude of the transverse wave modeled in the figure below if the height of a crest is 3 cm above is the resting p
    9·1 answer
  • Why are the alkali metals likely to react with group 17 elements?
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!