Answer
Assuming the mass of the car, m = 43000 kg
initial speed u = 0
vertical distance moved, h = 8.8 m
spring constant k = 5 x 10⁵ N / m
acceleration of gravity = 9.8 m/s²
From law of conservation of energy ,
Gravitational potential energy at starting position =potential energy of the spring at maximum compression



x = 14.83 m
If the mass of the car is equal to 43000 Kg the spring is compressed to 14.83 m
Q = heat energy , m=mass , c=specific heat , delta T= change in temperature
as you know heat is a form of energy which is <em>usually</em> measured in Joules according to the SI. and also we usually use kilograms for mass.
so you need to know the mass, specific heat, and change in temperature in order to find out the heat energy :)
<span>Using the kinematic equations below, we can calculate the initial velocity required.
Angle of projectile = 60 degrees
Acceleration due to gravity (Ay) = -10 m/s^2 (negative because downward)
Height of projectile (Dy) = 2m
Vfy^2=Voy^2 +2*Ay*Dy
Vfy = 0 m/s because the vertical velocity slows to zero at the height of its trajection.
So... 0 = Voy^2 + 2(-10)(2)
0 = Voy^2 - 40
40 = Voy^2
Sqrt40 = Voy
6.32 m/s = Voy
THIS IS NOT THE ANSWER. THIS IS JUST THE INITIAL VELOCITY IN THE Y DIRECTION.
Using trigonometry, Tan 60 = Voy/Vox. Tan 60 = 6.32/Vox. Vox*Tan 60 = Vox
Vox = 10.95 m/s. Now, using Vox = 10.95 and Voy = 6.32, we can use pythagorean theorem to find the total Vo. A^2 +B^2 = C^2
10.95^2 + 6.32^2 = C^2
Solving for C = 12.64 m/s
This is the velocity required to hit the surface. You can also calculate a bunch of other stuff now using the other kinematic equations.
V = 12.64 m/s</span>
Explanation:
To understand how a differential switch works, you first need to know how an electrical circuit works. If we have a circuit where a current intensity enters, it travels through different loads that may be the electrical elements of the home, the intensity of the electric current coming out of the circuit is the same as the one I enter.
Intensity is lost if, for example, a person is electrocuted, as part of the circuit current is lost by ground. The differential switch compares through the magnetic fields produced, the current coming in and the current coming out of the circuit. Being magnetic fields produced by the same intensity but by currents with opposite direction, these are canceled. In the event that the intensities are different there is a result of magnetic field, which causes a knob that cuts the electrical circuit to move.
Answer: 2000 v/m, from B to A.
Explanation: if point A is at the origin (x=0m) and point B is at the point x= 0.150m, the distance between both points (d) = 0.150 - 0 = 0.150m
Point A is at a 200v potential and point B is at a potential of 500v.
Difference in potential produces a voltage (v) = 500 - 200 = 300v.
The relationship between voltage, electric field intensity and distance is given by the formulae below
v=Ed
Where v = voltage = 300v, electric field =?, d = 0.150m
300 = E×0.150
E = 300/0.150
E = 2000 v/m.
Since point B is at higher potential than A, it implies that if there is an electron in this field, it will move from B to A thus making the direction of field be from B to A.