From the measured wavelength from diagram, the frequency of the sound is 6660 Hz.
<h3>What is the frequency of a wave?</h3>
The frequency of a wave is the number of complete oscillation per second completed by a wave.
Frequency is related to wavelength and speed by the following formula:
- Frequency = velocity/wavelength
Velocity of sound in air = 330 m/s
The measured wavelength = 5.0 cm = 0.05 m
Frequency = 330/0.05 = 6660 Hz
Therefore, based on the measured wavelength from diagram, the frequency of the sound is 6660 Hz.
Learn more about frequency of sound at: https://brainly.in/question/15373132
#SPJ1
Liquid and solid water were not in the giant gas cloudr
Answer:
total momentum = 8.42 kgm/s
velocity of the first cart is 3.660 m/s
Explanation:
Given data
mass m1 = 2.3 kg
mass m2 = 1.5 kg
final velocity V2 = 4.9 m/s
final velocity V3 = - 1.9 m/s
to find out
total momentum and velocity of the first cart
solution
we know mass and final velocty
and initial velocity of second cart V1 = 0
so now we can calculate total momentum that is m1 v2 + m2 v2
total momentum = 2.3 ×4.9 + 1.5 ×(-1.9)
total momentum = 8.42 kgm/s
and
conservation of momentum is
m1 V + m2 v1 = m1 v2 + m2 v3
put all value and find V
2.3 V + 1.5 ( 0) = 2.3 ( 4.9 ) + 1.5 ( -1.9)
V = 8.42 / 2.3
V = 3.660 m/s
so velocity of the first cart is 3.660 m/s
Answer: F = 130 N
Explanation: Solution:
Convert first 27 cm to m.
27 cm x 0.01 m / 1 cm = 0.27 m
Calculate the torque using T = Fd
Derive to find force F
F = T /d
= 35 N.m / 0.27 m
= 130 N