Answer:
Part A) 3899 kPa
Part B) 392.33 kJ/kg
Part C) 0.523
Part D) 495 kPa
Explanation:
Part A
First from the temperature at state 1 the relative specific volume and the internal energy at that state are determined from:
= 214.07 kJ/kg

= 621.2
The relative specific volume at state 2 is obtained from the compression ratio:

=
=621.2/ 8
= 77.65
From this the temperature and internal energy at state 2 can be determined using interpolation with data from A-17(table):
= 673 K
= 491.2 kJ/kg
The pressure at state 2 can be determined by manipulating the ideal gas relations at state 1 and 2:
= 
= 95*8*673/300
= 1705 kPa
Now from the energy balance for stage 2-3 the internal energy at state 3 can be obtained:

= 1241.2 kJ/kg
From this the temperature and relative specific volume at state 3 can be determined by interpolation with data from A-17(table):
= 1539 K
= 6.588
The pressure at state 3 can be obtained by manipulating the ideal gas relations for state 2 and 3:

= 3899 kPa
<u>Part B</u>
The relative specific volume at state 4 is obtained from the compression ratio:

= 52.7
From this the temperature and internal energy at state 4 can be determined by interpolation with data from A-17:
=775 K
= 571.74 kJ/kg
The net work output is the difference of the heat input and heat rejection where the heat rejection is determined from the decrease in internal energy in stage 4-1:

<u>Part C </u>
The thermal efficiency is obtained from the work and the heat input:
η=
=0.523
<u>Part D </u>
The mean effective pressure is determined from its standard relation:
MEP=
=
=
=495 kPa
Rabbit hope this u out hollow
Explanation:
A=b+d that is the way to rewrite the equation
Answer:
0.285
Explanation:
Given two forces of different magnitude, it is important to note that the product of normal force and coefficient of kinetic friction should be equal to the sum of these two forces at equilibrium. Therefore, this can be Mathematically expressed as:

where N is normal force,
is coefficient of static friction, F is force and subscripts 1 and 2 represent larger and smaller magnitude forces respectively. Making
the subject of the formula then

Since normal force N is also given by mg where m is mass of object and g is acceleration due to gravity then substituting N with mg we obtain that
and substituting the figures given in the question, taking g as 9.81 we obtain that

Hence,the coefficient of kinetic energy is 0.285 as calculated
To find the pressure with a given data for the height, you are asked to get the hydraulic pressure. Hydraulic pressure has the following formula:
P = density*acceleration due to gravity*height
Assume that the density of seawater is the same as that for pure water,density = 1000 kg/m^3.
P = 1000 kg/m3*9.81m/s2*9100m
P = 89271000 Pascals or 89.271 megapascals