Answer:
greenhouse gas is a gas that absorbs and emits radiant energy within the thermal infrared range
Explanation:
Animals and plants need to get rid of carbon dioxide gas through a process called respiration. Carbon moves from fossil fuels to the atmosphere when fuels are burned.
Answer:
28.79%
Explanation:
Given
Design Speed, V = 120km/h = 33.33m/s
Radius, R = 300m
Side Friction, Fs = 0.09
Gravitational Constant = 9.8m/s²
Using the following formula, we'll solve the required rate of superelevation.
e + Fs = V²/gR where e = rate
e = V²/gR - Fs
e = (33.33)²/(9.8 * 300) - 0.09
e = 0.287853367346938
e = 28.79%
Hence, the required rate of superelevation for the curve is calculated as 28.79%
Answer:![F_{net}=\frac{kq^2}{(L)^2}\left [ \frac{1}{2}+\sqrt{2}\right ]](https://tex.z-dn.net/?f=F_%7Bnet%7D%3D%5Cfrac%7Bkq%5E2%7D%7B%28L%29%5E2%7D%5Cleft%20%5B%20%5Cfrac%7B1%7D%7B2%7D%2B%5Csqrt%7B2%7D%5Cright%20%5D)
Explanation:
Given
Three charges of magnitude q is placed at three corners and fourth charge is placed at last corner with -q charge
Force due to the charge placed at diagonally opposite end on -q charge

where
Distance between the two charges

negative sign indicates that it is an attraction force
Now remaining two charges will apply the same amount of force as they are equally spaced from -q charge

The magnitude of force by both the charge is same but at an angle of 
thus combination of two forces at 2 and 3 will be

Now it will add with force due to 1 charge
Thus net force will be
![F_{net}=\frac{kq^2}{(L)^2}\left [ \frac{1}{2}+\sqrt{2}\right ]](https://tex.z-dn.net/?f=F_%7Bnet%7D%3D%5Cfrac%7Bkq%5E2%7D%7B%28L%29%5E2%7D%5Cleft%20%5B%20%5Cfrac%7B1%7D%7B2%7D%2B%5Csqrt%7B2%7D%5Cright%20%5D)
Answer:
521 nm
Explanation:
Given the values and units we are given, I'm assuming 5.76*10^14 Hz is frequency.
The formula to use here is λ * υ = c, where λ is wavelength, υ is frequency, and c is the speed of light.
λ = 
Answer:
Radius, r = 0.00523 meters
Explanation:
It is given that,
Magnetic field, 
Current in the toroid, I = 9.6 A
Number of turns, N = 6
We need to find the radius of the toroid. The magnetic field at the center of the toroid is given by :

r = 0.00523 m
or

So, the radius of the toroid is 0.00523 meters. Hence, this is the required solution.