Answer:
t = 1.16 s.
Explanation:
Given,
speed of conveyor belt, v = 3.2 m/s
coefficient of friction,f = 0.28
Using newton second law
f = ma
and we also know that frictional force
f = μ N
f = μ m g
equating both the force equation
a = μ g
a = 0.28 x 9.81
a = 2.75 m/s²
Using Kinematic equation
v = u + at
3.2 = 0 + 2.75 x t
t = 1.16 s.
Time taken by the box to move without slipping is 1.16 s.
Answer:
If a vertical line extending down from an object's CG extends outside its area of support, the object will topple
Explanation:
We can understand better this situation using a diagram with the forces acting on it.
In the attached image we can see that when the gravity center is bouncing outside from the area of the pedestal, the object will be out of balance and will fall.
Answer:
0.8712 m/s²
Explanation:
We are given;
Velocity of first car; v1 = 33 m/s
Distance; d = 2.5 km = 2500 m
Acceleration of first car; a1 = 0 m/s² (constant acceleration)
Velocity of second car; v2 = 0 m/s (since the second car starts from rest)
From Newton's equation of motion, we know that;
d = ut + ½at²
Thus,for first car, we have;
d = v1•t + ½(a1)t²
Plugging in the relevant values, we have;
d = 33t + 0
d = 33t
For second car, we have;
d = v2•t + ½(a2)•t²
Plugging in the relevant values, we have;
d = 0 + ½(a2)t²
d = ½(a2)t²
Since they meet at the next exit, then;
33t = ½(a2)t²
simplifying to get;
33 = ½(a2)t
Now, we also know that;
t = distance/speed = d/v1 = 2500/33
Thus;
33 = ½ × (a2) × (2500/33)
Rearranging, we have;
a2 = (33 × 33 × 2)/2500
a2 = 0.8712 m/s²
Answer:
Measurement is the assignment of a number to a characteristic of an object or event
Explanation: