Answer : The temperature when the water and pan reach thermal equilibrium short time later is, 
Explanation :
In this problem we assumed that heat given by the hot body is equal to the heat taken by the cold body.


where,
= specific heat of aluminium = 
= specific heat of water = 
= mass of aluminum = 0.500 kg = 500 g
= mass of water = 0.250 kg = 250 g
= final temperature of mixture = ?
= initial temperature of aluminum = 
= initial temperature of water = 
Now put all the given values in the above formula, we get:


Therefore, the temperature when the water and pan reach thermal equilibrium short time later is, 
Answer:
2,87 * 
Explanation:
When the bullets meet at the center and collide, since momentum is a vectoral quantity, their momentum vectors even up and are sumof zero. Formula of momentum is P = m.v , where m is mass and v is velocity. Let’s name the first two bullets as x,y and the one which mass is unknown as z. Then calculate momentum of x and y:
Px= 5,30 *
* 301 = 1,5953 kg*m/s
Py= 5,30 *
* 301 = 1,5953 kg*m/s
The angle between x and y bullets is 120°, and we know that if the angle between two equal magnitude vectors is 120°, the magnitude of the resultant vector will be equal to first two and placed in exact middle of two vectors. So we can say total momentum of x and y (Px+Py) equals to 1,5953 kg*m/s as well (Shown in the figure).
For z bullet to equalize the total momentum of x and y bullets, it needs to have the same amount of momentum in the opposite way.
Pz = 1,5953 = m * 554
m = 2,87 *
kg
Answer:
1) Mass that needs to be converted at 100% efficiency is 0.3504 kg
2) Mass that needs to be converted at 30% efficiency is 1.168 kg
Explanation:
By the principle of mass energy equivalence we have

where,
'E' is the energy produced
'm' is the mass consumed
'c' is the velocity of light in free space
Now the energy produced by the reactor in 1 year equals

Thus the mass that is covertred at 100% efficiency is

Part 2)
At 30% efficiency the mass converted equals

Answer: <em>Around each new moon and full moon, the sun, Earth, and moon arrange themselves more or less along a line in space. Then the pull on the tides increases, because the gravity of the sun reinforces the moon's gravity. ... This is the spring tide: the highest (and lowest) tide. Spring tides are not named for the season.</em>
The core difference is that heat deals with thermal energy, whereas temperature is more concerned with molecular kinetic energy. Heat is the transfer of thermal energy, whereas temperature is a property the object exhibits.