1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sholpan [36]
4 years ago
8

Suppose you watch a leaf bobbing up and down as ripples pass it by in a pond. You notice that it does two full up and down bobs

each second. What is true of the ripples on the pond?
Physics
1 answer:
otez555 [7]4 years ago
4 0

Answer:

The frequency of the ripples is 2Hz, and their period is 0.5 seconds.

Explanation:

Since the ripples on the pond are making the leaf oscillate up and down at a rate of two times per second, we can calculate the period T and the frequency f of the ripples on the ponT=\frac{1}{0.5Hz} =d.

The frequency, by definition, is the number of waves per unit of time. In this case, we have two waves per second, so the frequency is 2s⁻¹, or 2Hz.

The period is the inverse of the frequency, so

T=\frac{1}{2Hz} =0.5s

Then, the period is equal to 0.5 seconds.

You might be interested in
A bullet is fired straight up from a gun with a
Katena32 [7]
<span>v(4 seconds)= 300 m/s - 9.8 (m/s^2)(4s) = 260.8 m/s </span>, hope this helps:)
6 0
3 years ago
Read 2 more answers
Explain why squeezing a plastic mustard bottle forces mustard out to top.
Oliga [24]

Answer:

because when squeezing you are increasing pressure within the bottle and there is less pressure on the outside

5 0
3 years ago
Read 2 more answers
A 0.500-kg glider, attached to the end of an ideal spring with force constant undergoes shm with an amplitude of 0.040 m. comput
Nikitich [7]
There is a missing data in the text of the problem (found on internet):
"with force constant<span> k=</span>450N/<span>m"

a) the maximum speed of the glider

The total mechanical energy of the mass-spring system is constant, and it is given by the sum of the potential and kinetic energy:
</span>E=U+K=  \frac{1}{2}kx^2 + \frac{1}{2} mv^2
<span>where
k is the spring constant
x is the displacement of the glider with respect to the spring equilibrium position
m is the glider mass
v is the speed of the glider at position x

When the glider crosses the equilibrium position, x=0 and the potential energy is zero, so the mechanical energy is just kinetic energy and the speed of the glider is maximum:
</span>E=K_{max} =  \frac{1}{2}mv_{max}^2
<span>Vice-versa, when the glider is at maximum displacement (x=A, where A is the amplitude of the motion), its speed is zero (v=0), therefore the kinetic energy is zero and the mechanical energy is just potential energy:
</span>E=U_{max}= \frac{1}{2}k A^2
<span>
Since the mechanical energy must be conserved, we can write
</span>\frac{1}{2}mv_{max}^2 =  \frac{1}{2}kA^2
<span>from which we find the maximum speed
</span>v_{max}= \sqrt{ \frac{kA^2}{m} }= \sqrt{ \frac{(450 N/m)(0.040 m)^2}{0.500 kg} }=  1.2 m/s
<span>
b) </span><span> the </span>speed<span> of the </span>glider<span> when it is at x= -0.015</span><span>m

We can still use the conservation of energy to solve this part. 
The total mechanical energy is:
</span>E=K_{max}=  \frac{1}{2}mv_{max}^2= 0.36 J
<span>
At x=-0.015 m, there are both potential and kinetic energy. The potential energy is
</span>U= \frac{1}{2}kx^2 =  \frac{1}{2}(450 N/m)(-0.015 m)^2=0.05 J
<span>And since 
</span>E=U+K
<span>we find the kinetic energy when the glider is at this position:
</span>K=E-U=0.36 J - 0.05 J = 0.31 J
<span>And then we can find the corresponding velocity:
</span>K= \frac{1}{2}mv^2
v=  \sqrt{ \frac{2K}{m} }= \sqrt{ \frac{2 \cdot 0.31 J}{0.500 kg} }=1.11 m/s
<span>
c) </span><span>the magnitude of the maximum acceleration of the glider;
</span>
For a simple harmonic motion, the magnitude of the maximum acceleration is given by
a_{max} = \omega^2 A
where \omega= \sqrt{ \frac{k}{m} } is the angular frequency, and A is the amplitude.
The angular frequency is:
\omega =  \sqrt{ \frac{450 N/m}{0.500 kg} }=30 rad/s
and so the maximum acceleration is
a_{max} = \omega^2 A = (30 rad/s)^2 (0.040 m) =36 m/s^2

d) <span>the </span>acceleration<span> of the </span>glider<span> at x= -0.015</span><span>m

For a simple harmonic motion, the acceleration is given by
</span>a(t)=\omega^2 x(t)
<span>where x(t) is the position of the mass-spring system. If we substitute x(t)=-0.015 m, we find 
</span>a=(30 rad/s)^2 (-0.015 m)=-13.5 m/s^2
<span>
e) </span><span>the total mechanical energy of the glider at any point in its motion. </span><span>

we have already calculated it at point b), and it is given by
</span>E=K_{max}= \frac{1}{2}mv_{max}^2= 0.36 J
8 0
3 years ago
A brick in the shape of a cube with sides 10 cm has a density of 2500 kg/m^3. What is its weight? a.) 250 N
Arisa [49]

Answer:

c.) 25 N

Explanation:

 We find the volume of the brick, knowing that the volume of a cube is given by the formula:

l=0,1 metros \\V=l^{3}\\V=(0,1\: \: m)^{3}=0,001\: \: m^{3}

being l the side of the cube, which in this case is 10 cm or 0,1 m. Now we find the mass of the object, knowing the density and the Volume of the cube:

m=V*d\\m=(0,001 \:\:m^{3})(2500 \: \: \frac{Kg}{m^{3}})=2,5 \:\: Kg

We find the weight by multiplying the mass of the object with the gravity constant.

W=m*g=(2.5 \:Kg)*(9,81 \:m/s^{2} )=24,5 N\approx25\: N

8 0
3 years ago
Please help me with this please <br><br> I’ll mark you Brainly
ivolga24 [154]
I think it is option (C).

If the answer is helpful then mark me as brainly.
4 0
2 years ago
Other questions:
  • How do fish breathe
    6·1 answer
  • Sort the characteristics of solids liquids and gases into the correct colums
    10·1 answer
  • A semi-trailer is coasting downhill along a mountain highway when its brakes fail. The driver pulls onto a runaway truck ramp th
    13·1 answer
  • An air bubble at the bottom of a lake 36.0 m deep has a volume of 1.22 cm^3. If the temperature at the bottom is 5.9°C and at th
    6·1 answer
  • Are electrons lower in mass than neutrons
    7·2 answers
  • Describe the direction of the electric force between two opposite charges, between two like charges, and when a charge is in an
    11·1 answer
  • What is the energy of a photon that has the same wavelength as an electron having a kinetic energy of 15 ev?
    6·1 answer
  • Boltzmann’s constant is 1.38066 × 10−23 J/K, and the universal gas constant is 8.31451 J/K · mol.
    13·1 answer
  • A ballistic pendulum is a device used to measure the speed of projectiles. It consists of a block of wood that hangs from a stri
    11·1 answer
  • Roughly how many stars are in the Milky Way Galaxy?
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!