Answer:
v = 4.4 m / s
Explanation:
Unfortunately, the exercise scheme does not appear. Let's analyze the problem the marble leaves point A with an initial velocity, goes down and then rises to a given height where its velocity is zero, in the whole trajectory they tell us that the resistance is zero, so we can use the conservation relations of the enegy.
Starting point. Point A
Em₀ = K + U = ½ m v2 + mg y_a
point B.
Em_f = U = m g y
the energy is conserved
Em₀ = Em_f
½ m v² + mg y_a = m g y
½ m v² = m g (y -y_a)
v =
In the exercise the diagram is not seen, but the height of point A must be known, suppose that y_a = 4 m
v =
v = 4.4 m / s
Answer:
60 watts
Explanation:
Given that
Mass of the animal, m = 5 kg
Velocity of the animal, v = 10 m/s
Distance moved by the animal, d = 10 m
Drag force, F(d) = 12 N
Time taken, t = 2 seconds
To start with, we need to find the power output in itself before proceeding to find the average power output. And as such, we have
Power = Force * Distance/Time
But Distance/Time is velocity, so
Power = Force * Velocity
Power = 12 * 10
Power = 120 W.
We then use this power gotten to find the average power output.
Power(avg) = P/t
Power(avg) = 120 / 2
Power(avg) = 60 Watts.
Therefore, the average power output is found to be 60 Watts
Answer:
0.25 m/s
Explanation:
From the law of conservation of momentum
Mu+ mu = Mv' + m v
M= mass of the astronaut = 80 kg
m= mass of the oxygen tank= 10 Kg
v= speedof the tank 2 m/s
u= initial velocity of the system= 0
If we substitute the values, we have
( 80× 0 )+(10×0)= [(80 x v )+ (10 x 2)]
0= 80v + 20
-20=80v
v= -0.25 m/s ( we have a negative value because the astronaut and the motion of the cylinder are in opposite direction)
Hence the velocity the astronaut start to move off into space is 0.25 m/s
Answer:
Height of tree = 78.35 meters.
Explanation:
We have
1 meter = 3.28 feet
That is

Here height of tree = 257 ft
Height of tree = 257 x 0.3048 = 78.35 m
Height of tree = 78.35 meters.