Answer:
a) 29.36 m
b) 2.44 s
c) 2.57 s
d) 25.117 m/s
Explanation:
t = Time taken
u = Initial velocity = 24 m/s
v = Final velocity
s = Displacement
a = Acceleration due to gravity = 9.81 m/s²
b)

Time taken by the ball to reach the highest point is 2.44 seconds
a)

The highest point reached by the ball above its release point is 29.36 m
c) Total height is 3+29.35 = 32.35 m

The ball reaches the ground 2.57 seconds after reaching the highest point
d)

The ball will hit the ground at 25.2117 m/s
2HCl + MgO ---> MgCl2 + H2O
<span>Th find the average speed of a trip we need to dived the total distance by the total time.
Let's find the total distance d.
d = (300 mi/h)(2.00 h) + 750 miles
d = 600 miles + 750 miles
d = 1350 miles
The total distance is 1350 miles
Let's find the total time t.
t = 2.00 hours + (750 mi / 250 mi/h)
t = 2.00 hours + 3.00 hours
t = 5.00 hours
The total time of the trip is 5.00 hours.
We can find the average speed.
d / t = 1350 miles / 5.00 hours
d / t = 270 miles/ hour
The average speed of the trip is 270 mi/h
(Note that the direction does not matter when we find the average speed.)</span>
The equation for the de Broglie wavelength is:
<span>λ = (h/mv) √[1-(v²/c²)], </span>
<span>where h is Plank's Constant, m is the rest mass, v is velocity, and c is the velocity of light in vacuum. However, if c>>v (and it is, in this case) then the expression under the radical sign approaches 1, and the equation simplifies to: </span>
<span>λ = h/mv. </span>
<span>Substituting, (remember to convert the mass to kg, since 1 J = 1 kg·m²/s²): </span>
<span>λ = (6.63x10^-34 J·s) / (0.0459 kg) (72.0 m/s) = 2.00x10^-34 m.</span>