The variables which are involved in understanding Kepler's third law of
motion are
<h3 /><h3>What is Kepler's third law of motion?</h3>
Kepler's third law of motion states that the the square of the orbital period of
a planet is proportional to the cube of the semi-major axis of its orbit. He
also inferred that the greater the distance, the slower the orbital velocity.
This thereby makes option D the most appropriate option as it contains the
orbital velocity and distance to sun variables.
Read more about Kepler's third law of motion here brainly.com/question/777046
Answer:
efficiancy=40 percent
Explanation:
efficiency=energy output/energy input×100
efficiancy=8J/20J×100
efficiancy=0.4×100
efficiancy=40 percent
Mark brianliest if my answer suit your question..
Answer:
98 kg
Mass is given as 10 kg. Therefore, Weight = 10 kg * 9.8 m/s^2. Weight = 98 kg.m/s^2. = 98 Newtons.
Explanation:
plz mark me brainleast
Answer:
ma = 48.48kg
Explanation:
To find the mass of the astronaut, you first calculate the mass of the chair by using the information about the period of oscillation of the empty chair and the spring constant. You use the following formula:
(1)
mc: mass of the chair
k: spring constant = 600N/m
T: period of oscillation of the chair = 0.9s
You solve the equation (1) for mc, and then you replace the values of the other parameters:
(2)
Next, you calculate the mass of the chair and astronaut by using the information about the period of the chair when the astronaut is sitting on the chair:
T': period of chair when the astronaut is sitting = 2.0s
M: mass of the astronaut plus mass of the chair = ?
(3)
Finally, the mass of the astronaut is the difference between M and mc (results from (2) and (3)) :

The mass of the astronaut is 48.48 kg