To solve this problem it is necessary to apply the concepts related to the concept of overlap and constructive interference.
For this purpose we have that the constructive interference in waves can be expressed under the function

Where
a = Width of the slit
d = Distance of slit to screen
m = Number of order which represent the number of repetition of the spectrum
Angle between incident rays and scatter planes
At the same time the distance on the screen from the central point, would be

Where y = Represents the distance on the screen from the central point
PART A ) From the previous equation if we arrange to find the angle we have that



PART B) Equation both equations we have


Re-arrange to find a,


Answer:
the period of the 16 m pendulum is twice the period of the 4 m pendulum
Explanation:
Recall that the period (T) of a pendulum of length (L) is defined as:

where "g" is the local acceleration of gravity.
SInce both pendulums are at the same place, "g" is the same for both, and when we compare the two periods, we get:

therefore the period of the 16 m pendulum is twice the period of the 4 m pendulum.
Answer: In order to help improve your fitness levels you can swim, jog/run, body weight exercises, and a balanced diet. Explain why the greatest benefits to cardiorespiratory fitness come from sustained physical activities like running, walking and cycling.
Explanation:
The correct answer is D.
A nucleon<span> is one of either of the two types of subatomic particles (neutrons and protons) which are located in the nucleus of atoms.
</span>
The total number of nucleon in the nucleus of an atom gives you an idea about the mass of that atom. In fact, one may refer mass number as nucleon number.
Simply put, nucleons are the particles that make nucleus of an atom and are held up together inside the nucleus due to nuclear force.
<span>Her center of mass will rise 3.7 meters.
First, let's calculate how long it takes to reach the peak. Just divide by the local gravitational acceleration, so
8.5 m / 9.8 m/s^2 = 0.867346939 s
And the distance a object under constant acceleration travels is
d = 0.5 A T^2
Substituting known values, gives
d = 0.5 9.8 m/s^2 (0.867346939 s)^2
d = 4.9 m/s^2 * 0.752290712 s^2
d = 3.68622449 m
Rounded to 2 significant figures gives 3.7 meters.
Note, that 3.7 meters is how much higher her center of mass will rise after leaving the trampoline. It does not specify how far above the trampoline the lowest part of her body will reach. For instance, she could be in an upright position upon leaving the trampoline with her feet about 1 meter below her center of mass. And during the accent, she could tuck, roll, or otherwise change her orientation so she's horizontal at her peak altitude and the lowest part of her body being a decimeter or so below her center of mass. So it would look like she jumped almost a meter higher than 3.7 meters.</span>