Answer:
T= 8.061N*m
Explanation:
The first thing to do is assume that the force is tangential to the square, so the torque is calculated as:
T = Fr
where F is the force, r the radius.
if we need the maximum torque we need the maximum radius, it means tha the radius is going to be the edge of the square.
Then, r is the distance between the edge and the center, so using the pythagorean theorem, r i equal to:
r = 
r = 0.5374m
Finally, replacing the value of r and F, we get that the maximun torque is:
T = 15N(0.5374m)
T= 8.061N*m
Explanation:
This how you do it..
Calculate Watt-hours Per Day. Device Wattage (watts) x Hours Used Per Day = Watt-hours (Wh) per Day. ...
Convert Watt-Hours to Kilowatts. Device Usage (Wh) / 1000 (Wh/kWh) = Device Usage in kWh. ...
Find Your Usage Over a Month.
Answer:
7 m/s
Explanation:
To solve this problem you must use the conservation of energy.

That math speak for, initial kinetic energy plus initial potential energy equals final kinetic energy plus final potential energy.
The initial PE (potential energy) is 0 because it hasn't been raised in the air yet. The final KE (kinetic energy) is 0 because it isn't moving. This gives the following:


K1=U2

Solve for v

Input known values and you get 7 m/s.
Answer:
F = 156.3 N
Explanation:
Let's start with the top block, apply Newton's second law
F - fr = 0
F = fr
fr = 52.1 N
Now we can work with the bottom block
In this case we have two friction forces, one between the two blocks and the other between the block and the surface. In the exercise, indicate that the two friction coefficients are equal
we apply Newton's second law
Y axis
N - W₁ -W₂ = 0
N = W₁ + W₂
as the two blocks are identical
N = 2W
X axis
F - fr₁ - fr₂ = 0
F = fr₁ + fr₂
indicates that the lower block is moving below block 1, therefore the upper friction force is
fr₁ = 52.1 N
fr₁ = μ N
a
s the normal in the lower block of twice the friction force is
fr₂ = μ 2N
fr₂ = 2 μ N
fr₂ = 2 fr₁
we substitute
F = fr₁ + 2 fr₁
F = 3 fr₁
F = 3 52.1
F = 156.3 N