Answer:
The speed of the baseball is approximately 19.855 m/s
Explanation:
From the question, we have;
The frequency of the microwave beam emitted by the speed gun, f = 2.41 × 10¹⁰ Hz
The change in the frequency of the returning wave, Δf = +3190 Hz higher
The Doppler shift for the microwave frequency emitted by the speed gun which is then reflected back to the gun by the moving baseball is given by 2 shifts as follows;
Where;
Δf = The change in frequency observed, known as the beat frequency = 3190 Hz
= The speed of the baseball
c = The speed of light = 3.0 × 10⁸ m/s
f = The frequency of the microwave beam = 2.41 × 10¹⁰ Hz
By plugging in the values, we have;
The speed of the baseball, ≈ 19.855 m/s
The resultant vector is 5.2 cm at a direction of 12⁰ west of north.
<h3>
Resultant of the two vectors</h3>
The resultant of the two vectors is calculated as follows;
R = a² + b² - 2ab cos(θ)
where;
- θ is the angle between the two vectors = 45° + (90 - 57) = 78⁰
- a is the first vector
- b is the second vector
R² = (3.7)² + (4.5)² - (2 x 3.7 x 4.5) cos(78)
R² = 27.02
R = 5.2 cm
<h3>Direction of the vector</h3>
θ = 90 - 78⁰
θ = 12⁰
Thus, the resultant vector is 5.2 cm at a direction of 12⁰ west of north.
Learn more about resultant vector here: brainly.com/question/28047791
#SPJ1
Because the coefficient of friction depends on the surface
(a) The horizontal and vertical components of the ball’s initial velocity is 37.8 m/s and 12.14 m/s respectively.
(b) The maximum height above the ground reached by the ball is 8.6 m.
(c) The distance off course the ball would be carried is 0.38 m.
(d) The ball's velocity after 2.0 seconds if there is no crosswind is 38.53 m/s.
<h3>
Horizontal and vertical components of the ball's velocity</h3>
Vx = Vcosθ
Vx = 39.7 x cos(17.8)
Vx = 37.8 m/s
Vy = Vsin(θ)
Vy = 39.7 x sin(17.8)
Vy = 12.14 m/s
<h3>Maximum height reached by the ball</h3>
Maximum height above ground = 7.51 + 1.09 = 8.6 m
<h3>Distance off course after 2 second </h3>
Upward speed of the ball after 2 seconds, V = V₀y - gt
Vy = 12.14 - (2x 9.8)
Vy = - 7.46 m/s
Horizontal velocity will be constant = 37.8 m/s
Resultant speed of the ball after 2 seconds = √(Vy² + Vx²)
<h3>Resultant speed of the ball and crosswind</h3>
<h3>Distance off course the ball would be carried</h3>
d = Δvt = (38.72 - 38.53) x 2
d = 0.38 m
The ball's velocity after 2.0 seconds if there is no crosswind is 38.53 m/s.
Learn more about projectiles here: brainly.com/question/11049671
Answer:
a) 2.41 km
b) 38.8°
Questions c and d are illegible.
Explanation:
We can express the displacements as vectors with origin on the point he started (0, 0).
When he traveled south he moved to (-3, 0).
When he moved east he moved to (-3, x)
The magnitude of the total displacement is found with Pythagoras theorem:
d^2 = dx^2 + dy^2
Rearranging:
dy^2 = d^2 - dx^2
The angle of the displacement vector is:
cos(a) = dx/d
a = arccos(dx/d)
a = arccos(3/3.85) = 38.8°