The answer is going to be 87.5%
Answer:
- A-B=7x-3x+10-4x²-66+4
- 4x-52-4x²
hope it helps
stay safe healthy and happy.
Area of rectangle is length x width
area of smaller rectangle
9x5=45
area of large rectangle
11x7=77
77-45=32
Answer:
No.
Step-by-step explanation:
There are two different ways to do this - solve for x in the given equation or substitute the value for x and see if you get a true statement.
3x + 7 = 13 subtract 7 from both sides
3x = 6 divide by 3 on both sides
x = 2
3(3) + 7 = 13
9 + 7 = 13
16 ≠ 13
Therefore, x = 3 is not a solution for 3x + 7 = 13.
if we have a number like say hmm 4, and we say hmmm √4 is ±2, it simply means, that if we multiply that number twice by itself, we get what's inside the root, we get the 4, so (+2)(+2) = 4, and (-2)(-2) = 4, recall that <u>minus times minus = plus</u>.
so, any when we're referring to even roots like
, the positive number, that can multiply itself an even amount of times, will produce a valid value, BUT the negative number that multiply itself an even amount of times, will also produce a valid value.
now, that's is not true for odd roots like
, because the multiplication of the negative number will not produce a valid value, let's put two examples on that.
![\bf \sqrt[3]{27}\implies \sqrt[3]{3^3}\implies 3\qquad because\qquad (3)(3)(3)=27 \\\\\\ however\qquad (-3)(-3)(-3)\ne 27~\hspace{8em}(-3)(-3)(-3)=-27 \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ \sqrt[3]{-125}\implies \sqrt[3]{-5^3}\implies -5\qquad because\qquad (-5)(-5)(-5)=-125 \\\\\\ however\qquad (5)(5)(5)\ne -125~\hspace{10em}(5)(5)(5)=125](https://tex.z-dn.net/?f=%5Cbf%20%5Csqrt%5B3%5D%7B27%7D%5Cimplies%20%5Csqrt%5B3%5D%7B3%5E3%7D%5Cimplies%203%5Cqquad%20because%5Cqquad%20%283%29%283%29%283%29%3D27%0A%5C%5C%5C%5C%5C%5C%0Ahowever%5Cqquad%20%28-3%29%28-3%29%28-3%29%5Cne%2027~%5Chspace%7B8em%7D%28-3%29%28-3%29%28-3%29%3D-27%0A%5C%5C%5C%5C%5B-0.35em%5D%0A%5Crule%7B34em%7D%7B0.25pt%7D%5C%5C%5C%5C%0A%5Csqrt%5B3%5D%7B-125%7D%5Cimplies%20%5Csqrt%5B3%5D%7B-5%5E3%7D%5Cimplies%20-5%5Cqquad%20because%5Cqquad%20%28-5%29%28-5%29%28-5%29%3D-125%0A%5C%5C%5C%5C%5C%5C%0Ahowever%5Cqquad%20%285%29%285%29%285%29%5Cne%20-125~%5Chspace%7B10em%7D%285%29%285%29%285%29%3D125)
so, when the root is an odd root, you will always get only one number that will produce the radicand.