Answer:
2.2 °C/m
Explanation:
It seems the question is incomplete. However, this problem has been found in a web search, with values as follow:
" A certain substance X melts at a temperature of -9.9 °C. But if a 350 g sample of X is prepared with 31.8 g of urea (CH₄N₂O) dissolved in it, the sample is found to have a melting point of -13.2°C instead. Calculate the molal freezing point depression constant of X. Round your answer to 2 significant digits. "
So we use the formula for <em>freezing point depression</em>:
In this case, ΔTf = 13.2 - 9.9 = 3.3°C
m is the molality (moles solute/kg solvent)
- 350 g X ⇒ 350/1000 = 0.35 kg X
- 31.8 g Urea ÷ 60 g/mol = 0.53 mol Urea
Molality = 0.53 / 0.35 = 1.51 m
So now we have all the required data to <u>solve for Kf</u>:
Answer/Explanation:
Chlorine and Fluorine are in the Halogen family. The elements in the Halogen family are:
Fluorine (F)
Chlorine (Cl)
Bromine (Br)
Iodine (I)
Astatine (At)
Tennessine (Ts)
Hydrogen (H) is a nonmetal
Oxygen (O) is a nonmetal
Lithium (Li) is an alkaline metal.
It is insoluble. Because one of the substances are polar and the other is non-polar.
Answer:
6
Explanation:
number of protons equal number of electrons for the atom to be stable