Velocity and mass are directly proportional to the quantity of momentum by:
p = mv. Therefore, and increase in either velocity or mass will lead to an increase in momentum and vice versa. Momentum during a reaction is always conserved, meaning that the mass and initial velocity before a reaction will always be equal to the change in mass and velocity produced after the reaction. Kinetic energy after a reaction, however, is not always conserved. For example if a fast moving vehicle collided with a stationary vehicle, and moved together, the overall kinetic energy would be after the reaction, as a heaver mass would be moved by the same velocity causing a decrease in kinetic energy.
I don't know if this is exactly what you are looking for, but in physics this is how it is understood.
Answer:
VP (solution) = 171.56 mmHg
Explanation:
Vapor pressure of pure solvent(P°) - Vapor pressure of solution (P') = P° . Xm
Let's replace the data:
173.11 mmHg - P' = 173.11 mmHg . Xm
Let's determine the Xm (mole fraction for solute)
Mole fraction for solute = Moles of solute / Total moles
Total moles = Moles of solute + moles of solvent.
Let's determine the moles
Moles of solvent → 623.4 g / 119.4 g/mol = 5.22 moles
Moles of solute → 9.322 g / 180.1 g/mol = 0.052 moles
Total moles = 0.052 + 5.22 = 5.272 moles
Xm = 0.052 moles / 5.272 moles = 0.009 → 9/1000
173.11 mmHg - P' = 173.11 mmHg . 9/1000
P' = - (173.11 mmHg . 9/1000 - 173.11 mmHg)
P' = 171.56 mmHg
Explanation:
Chemical weathering is caused by rain water reacting with the mineral grains in rocks to form new minerals (clays) and soluble salts. These reactions occur particularly when the water is slightly acidic.
The answer is D. Evaporating water only breaks apart intermolecular bonds like H-bonds and dipole-dipole bonds, and does not change the chemical composition (or intramolecular bonds).
I hypothesize that compressing air causes the temperature to increase.
Can you give me a brainliest?