When oxygen has an electronegativity of 3.5, and carbon has an electronegativity of 2.5, then the oxygen atom would have a slightly negative charge. The oxygen atom in the carbon monoxide molecule would pull more electrons to its side since it has higher electronegativity making it slightly negative and the carbon would have a slightly positive charge as it would contain less electrons. This results to the formation of a polar molecule. A polar molecule is made when the molecule contains a slightly positive end and a slightly negative end. It would have a net dipole which is a result of the partial opposing charges in the molecule.
Electrons in an atom can be classified as core electrons and valence electrons. Valence electrons are those electrons which are present in valence shell and participates in bond formation. While, Core electrons are all remaining electrons which are not present in valence shell, hence not take part in bonding.
Atomic number of Selenium (Se) is 34 hence it has 34 electrons with following electronic configuration;
1s², 2s², 2p⁶, 3s², 3p⁶, 4s², 3d¹⁰, 4p⁴
From electronic configuration it is found that the valence shell is 4, and the number of electrons present in valence shell are 6. So,
Core Electrons = Total Electrons - Valence Electrons
Core Electrons = 34 - 6
Core Electrons = 28
Result:
There are 28 core electrons in Selenium.
Answer:
I hope this is it. I'm not really sure.
Answer:
See attachment.
Explanation:
In the first step, a cyclic structure with a positive bromine is formed. The bromine shares the positive charge with the two carbons that it is bonded to, so the carbons are partially positive.
The second bromine atom then attacks the carbon center, coming in from below the first bromine atom ("backside attack") where the antibonding orbital of the second bromine atom is.
The stereochemistry of the mechanism causes the final product to be an anti-dibromocyclohexane.