Answer:
The new volume will be 367mL
Explanation:
Using PV = nRT
V1 = 259mL = 0.000259L
n1 = 0.552moles
At constant temperature and pressure, the value is
P * 0.000259 = 0.552 * RT ------equation 1
= 0.552 / 0.000259
= 2131.274
V2 = ?
n2 = 0.552 + 0.232
n2 = 0.784mole
Using ideal gas equation,
PV = nRT
P * V2 = 0.784 * RT ---------- equation 2
Combining equations 1 and 2 we have;
V2 = 0.784 / 2131.274
V2 = 0.000367L
V2 = 367mL
Answer:
9.8×10^-4...... is the answer
I would say the answer is C
hope this helps :)
Answer:
The specific heat of sodium is 1,23J/g°C
Explanation:
Using the atomic weight of sodium (23g/mol) and the atomic weight definition, we have that each mole of the substance has 23 grams of sodium.
starting from this, we use the atomic weight of sodium to convert the units from J / mol ° C to J / g ° C

Answer:
Explanation:
Given parameters:
Mass of aluminium oxide = 3.87g
Mass of water = 5.67g
Unknown:
Limiting reactant = ?
Solution:
The limiting reactant is the reactant in short supply in a chemical reaction. We need to first write the chemical equation and convert the masses given to the number of moles.
Using the number of moles, we can ascertain the limiting reactants;
Al₂O₃ + 3H₂O → 2Al(OH)₃
Number of moles;
Number of moles = 
molar mass of Al₂O₃ = (2x27) + 3(16) = 102g/mole
number of moles =
= 0.04mole
molar mass of H₂O = 2(1) + 16 = 18g/mole
number of moles =
= 0.32mole
From the reaction equation;
1 mole of Al₂O₃ reacted with 3 moles of H₂O
0.04 mole of Al₂O₃ will react with 3 x 0.04 mole = 0.12 mole of H₂O
But we were given 0.32 mole of H₂O and this is in excess of amount required.
This shows that Al₂O₃ is the limiting reactant