I'm not sure if this is correct but it's what I'll do
This is free-fall problem.
Stone A is thrown upward, at the point it falls down to the place where it was thrown, the velocity is -15m/s.
Now I choose the bridge is the origin. From the bridge, stone A and B fall the same distance which means Ya = Yb ( vertical distance )
Ya = Vo(t + 2) + 1/2a(t+2)^2
= -15(t + 2) + 1/2(9.8)(t^2 + 4t + 4)
= -15t - 30 + 4.5(t^2 + 4t + 4)
= -15t - 30 + 4.5t^2 + 18t + 18
= 4.5t^2 +3t - 12
Yb = Vo(t) + 1/2a(t)^2
= 0 + 4.5t^2
4.5t^2 = 4.5t^2 +3t - 12
0 = 3t - 12
4 = t
Time for Stone B is 4s
Time for Stone A is 6s
Answer:
When the magnetic field is tilted so it is no longer perpendicular to the page.
When the magnetic field gets stronger.
When the size of the loop decreases.
Explanation:
According to the Faraday-Lenz law, the change of the magnetic flux over time causes an induced current, this flux is given by:

Therefore, there will be a variable magnetic flux, when the magnitude of the magnetic field (B) changes over time, when the area of the loop (S) changes over time and / or when the angle (
) between the field and the surface vector changes over time.
1 horsepower is equal to 746 W, so the power of the engine is

The power is also defined as the energy E per unit of time t:

Where the energy corresponds to the work done by the engine, which is

. Re-arranging the formula, we can calculate the time t needed to do this amount of work:
Answer:
θ = 4.716 10⁻⁶ rad
Explanation:
In order for the releases to be considered separate, they must meet the Rayleigh criterion that establishes that the maximum diffraction of one star must coincide with the first minimum of the diffraction pattern of the second star.
We use the diffraction equation for a slit
a sin θ = m λ
The minimum occurs at m = 1
sin θ = λ / a
Since the angles in these systems are very small, we can approximate the sine to its angle in radians
θ = λ / a
The telescope has a circular aperture whereby polar cords should be used, which introduces a constant number
θ = 1.22 λ / a
Let's calculate
θ = 1.22 518 10⁻⁹ / 13.4 10⁻²
θ = 4.716 10⁻⁶ rad