Answer:
Because of the location, humidity and temperatures.
Explanation:
Coca is grown in humid and very humid subtropical forests, called yungas and
they form the lower floor of the upper Jungle, in the Central Andes, mostly in Peru and Bolivia. The yungas are in contact with the rainforests of the lowlands in Amazonia, where it has been started to expand coca cultivation recently (Dourojeanni, 1988). The optimum altitude is 1000 a 2000 meters (where cocaine content is higher), with optimal annual average precipitation, is 2000 meters mm, but it is grown between 700 and 2000 msnm and with an average annual rainfall of 1000 to 4200 mm.
msnm = meters above sea level
So that the correct representative of the people gets elected to head the people- so that a person who is thought to be capable enough to rule over people and take the correct decisions may be representative to the people.
Answer: momentum = 6kgm/s
Explanation:
given that the baseball pitcher is at stationary position, his velocity will be equal to zero. If velocity is zero, his linear momentum will therefore equal to zero.
Linear momentum is the product of mass and velocity. Given that the baseball has
Mass M = 0.15 kg
Velocity V = 40 m/s
Momentum = MV
Momentum = 0.15 × 40 = 6 kgm/s
Answer:




Explanation:
r = Radius
k = Coulomb constant = 
Electric field is given by

The charge is 

The charge is 
The charge inside will have the polarity changed

Outside the charge will be

Answer:
Use of telemetry and radar astronomy
Explanation:
An astronomical Unit (AU) is a unit of measuring distances in outer space, which is based on the approximate distance between the earth and the Sun.
After several years of trying to approximate the distance between the Sun and the Earth using several methods based on geometry and some other calculations, advancements in technology made available the presence of special motoring equipment, which can be placed in outer space to remotely monitor and measure the position of the sun.
The use of direct radar measurements to the sun (radar astronomy) have also made the determination of the AU more accurate.
A standard radar pulse of known speed is sent to the Sun, and the time with which it takes to return is measured, once this is recorded, the distance between the Earth and the Sun can be calculated using
distance = speed X time.
However, most of these means have to be corrected for parallax errors