Your answer is c holding a brick doesn't contain movement, but energy to grip on it.
hoped it helped!!!
Answer:
Explanation:
Left block is on surface with higher inclination so it will go down . If T be tension
For motion of block A ,
net force = mgsin60 - (T + mg cos 60 x μ ) , μ is coefficient of friction .
ma = mgsin60 - T - mg cos 60 x .1
10a = 277.13 - T - 16
= 261.13 - T
T = 261.13 - 10a
For motion of block B
T - mg sin30 - mgcos30 x μ = ma
T- 160 - 27.71 = 10 a
261.13 - 10a - 160 - 27.71 = 10a
73.42 = 20a
a = 3.67 ft / s²
common acceleration = 3.67 ft / s²
A build up of charges on a sock from a dryer
Answer:
a) No difference
Explanation:
Since the billiard balls are identical , they have the same mass. Also they have the same speed
Since the angular momentum is conserved and the total energy is conserved ( if we assume elastic collision)
1/2 m1 * v i1² +1/2 m2 * v i1² = 1/2 m1 * v f1² +1/2 m2 * v f2²
where m= mass , vi= initial velocity , vf= final velocity
since m1=m2=m , vi1=vi2=vi
1/2 m1 * v i1² +1/2 m2 * v i1² = 1/2 m1 * v f1² +1/2 m2 * v f2²
m * v i² = 1/2 m (v f1² +v f2² )
vi² = 1/2(v f1² +v f2² )
since the 2 balls are indistinguishable from each other (they have identical initial mass and velocity) there is no reason for a preferential speed for one of the balls and therefore its velocities must be equal . Thus vf1=vf2=vf
therefore
v i² = 1/2(v f1² +v f2² ) = v i1² = 1/2* 2vf² = vf²
and thus
vi= vf
in conclusion, there is no difference in speed after the rebound
Answer:
<h3>The answer is 3.81 kg</h3>
Explanation:
The mass of the dog can be found by using the formula

f is the force
a is the acceleration
From the question we have

We have the final answer as
<h3>3.81 kg</h3>
Hope this helps you