Answer:

Explanation:
Required
Which equation represents ohm's law?
Literally, ohm's law implies that current (I) is directly proportional to voltage (V) and inversely proportional to resistance (R).
Mathematically, this can be represented as:

Convert the expression to an equation

Multiply both sides by R to make V the subject


Reorder


<em>Option (a) is correct; Others are not</em>
You see, during the day the ocean collects heat from the sun. So the air above the ocean get warm at night, but the rest of the air on the land gets cooler because water has the ability to collect energy from the Sun.
Answer:
it will move towards the object's magnetic south
Explanation:
The compass pints towards the earth geographic north because the magnetic south of the earth's magnetic field is located in there, if you placed such compass neaar the piece of ferromagnetic material, the magnetic field produced by the magnet will make the compass needle point towards its south magnetic pole, in the same fashion as it points to the earth's magnetic south. It will point to the object's south pole because the magnetic field will be stronger than the earth's (which is weak) that is because of the way magnetism works, opposite poles are attracted and similar poles will tend to separate from each other
Answer:
a) m=20000Kg
b) v=0.214m/s
Explanation:
We will separate the problem in 3 parts, part A when there were no coals on the car, part B when there is 1 coal on the car and part C when there are 2 coals on the car. Inertia is the mass in this case.
For each part, and since the coals are thrown vertically, the horizontal linear momentum p=mv must be conserved, that is,
, were each velocity refers to the one of the car (with the eventual coals on it) for each part, and each mass the mass of the car (with the eventual coals on it) also for each part. We will write the mass of the hopper car as
, and the mass of the first and second coals as
and
respectively
We start with the transition between parts A and B, so we have:

Which means

And since we want the mass of the first coal thrown (
) we do:



Substituting values we obtain

For the transition between parts B and C, we can write:

Which means

Since we want the new final speed of the car (
) we do:

Substituting values we obtain
