Answer:
Torque, 
Explanation:
It is given that,
Length of the wrench, l = 0.5 m
Force acting on the wrench, F = 80 N
The force is acting upward at an angle of 60.0° with respect to a line from the bolt through the end of the wrench. We need to find the torque is applied to the nut. We know that torque acting on an object is equal to the cross product of force and distance. It is given by :



So, the torque is applied to the nut is 34.6 N.m. Hence, this is the required solution.
Answer:
Increases, increases
Explanation:
The current is directly proportional to the voltage and inversely proportional to the resistance. The implication of this is that, whenever the voltage is increased, the current increases simultaneously. On the other hand, if the resistance is increased, the current will decrease accordingly and vice versa.
Recall that power is given by P= V^2/R where;
P= power, V= voltage and R= resistance
We can see that power and resistance are inversely related hence decreasing the resistance increases the power output of the lightbulb.
Answer:120 min
Explanation:
Given
Amanda spent
of her time after school doing Home work
And
of her remaining time riding her bike
It is given that she rode her bike for 45 minutes in a week
Let t be the time after school
therefore Amanda spend
in home work and
time is left
From remaining
time she spends
time riding her bike
therefore 
thus 
therefore time spent on home work is 
Average speed is worked out from dividing distance by time.
Answer:
48.16 %
Explanation:
coefficient of restitution = 0.72
let the incoming speed be = u
let the outgoing speed be = v
kinetic energy = 0.5 x mass x 
- incoming kinetic energy = 0.5 x m x
- coefficient of restitution =

0.72 =
v = 0.72u
therefore the outgoing kinetic energy = 0.5 x m x 
outgoing kinetic energy = 0.5 x m x 
outgoing kinetic energy = 0.5184 (0.5 x m x
)
recall that 0.5 x m x
is our incoming kinetic energy, therefore
outgoing kinetic energy = 0.5184 x (incoming kinetic energy)
from the above we can see that the outgoing kinetic energy is 51.84 % of the incoming kinetic energy.
The energy lost would be 100 - 51.84 = 48.16 %