If you are involved in a collision, it's important that you stop your car and protect others, as well as your self, from oncoming traffic. If you do not stop, you will have an arrest warrant against your name as it can safely be considered a 'hit and run.'
Answer:
0.9 N
Explanation:
The force exerted on an object is related to its change in momentum by:

where
F is the force exerted
is the change in momentum
is the time interval
The change in momentum can be rewritten as

where
m is the mass
u is the initial velocity
v is the final velocity
So the formula can be rewritten as

In this problem we have:
is the mass rate
is the initial velocity
is the final velocity
Therefore, the force exerted by the hail on the roof is:

Answer:
The acceleration expressed in the new units is 
Explanation:
To convert from
to
it is necessary to remember that there are 1000 meters in 1 kilometer and 3600 seconds in 1 hour:
Then by means of a rule of three it is get:


Hence, the units of meters and seconds will cancel. Notice the importance of square the ratio 3600s/1h, so that way they can match with the other units:

So the acceleration expressed in the new units is
.
Answer: Systems thinking is a holistic approach to analysis that focuses on the way that a system's constituent parts interrelate and how systems work over time and within the context of larger systems.
Answer:
We conclude that the change in momentum of a body is equal to the impulse experienced by a body.
Explanation:
Considering the equation
F • t = m • Δ v
Here,
m • Δ v is basically a change in momentum of a body which is equal to the mass of the object multiplied by the change in its velocity.
Also,
- F • t is called the impulse of the object.
In the formula, it is clear that the impulse experienced by a body during the collision is basically a change in the momentum of the body.
In other words, the change in momentum of a body is equal to the impulse experienced by a body.
Therefore, we conclude that the change in momentum of a body is equal to the impulse experienced by a body.