Answer:
33 Celsius is 306.15 in absolute temperature
Resistance is the name of the ratio of the voltage applied to a circuit and the current in a circuit. Goes under <span>Ohm's Law</span>
Answer:
<h2>velocity = 12.73 km/hr.</h2><h2 />
Explanation:
velocity = distance / time
=<u> 28 km </u>
2.2 hr
= 12.73 km/hr.
Answer:
a) The student must run flight of stairs to lose 1.00 kg of fat 709.5 times.
b) Average power
P(w)= 1062.07 [w]
P(hp)=1.42 [hp]
c) This activity is highly unpractical, because the high amount of repetitions he has to due in order to lose, just 1 Kg of fat.
Explanation:
First, lets consider the required amount of work to move the mass of the student. (considering running stairs just as a vertical movement)
Work:

Where m is the mass of the student, g is gravity (9.8 m/s) and d is the total distance going up the stairs (0.15m *85steps= 12.75m )
![W= F*d= m*g*d=85* 9.8*12.75=10620.75 [J]](https://tex.z-dn.net/?f=W%3D%20F%2Ad%3D%20m%2Ag%2Ad%3D85%2A%209.8%2A12.75%3D10620.75%20%5BJ%5D)
Converting from Joules to Kcals:

Now lets take into account the efficiency of the human body (20%)
2.537 ---> 20%
x ---> 100%

So the student is consuming 12.685 KCals each time he runs up the stairs.
Now,
1 g --> 9 Kcals
1000 g --> 9000KCals
Burning 1 g of fat, requieres 9 KCals, 1000g burns 9000KCals. So in order to burn a 1Kg of fat:

He must run up the stairs 709.5 times, to burn 1 Kg of fat.
********************
For b) just converting units, taking into account the time lapse. (53103.75 is the 100% of the energy in joules, from converting 12.685Kcals to joules)
![Power=\frac{Joules}{Seconds} =\frac{53103.75}{50} =1062.075 [W]\\](https://tex.z-dn.net/?f=Power%3D%5Cfrac%7BJoules%7D%7BSeconds%7D%20%3D%5Cfrac%7B53103.75%7D%7B50%7D%20%3D1062.075%20%5BW%5D%5C%5C)
![P(hp)=\frac{P(w)}{745.7} =\frac{1062.075}{745.7} =1.42[hp]](https://tex.z-dn.net/?f=P%28hp%29%3D%5Cfrac%7BP%28w%29%7D%7B745.7%7D%20%3D%5Cfrac%7B1062.075%7D%7B745.7%7D%20%3D1.42%5Bhp%5D)
*****
Answer:
Explanation:
There is electric field between the plates whose value is given by the following expression
electric field E = V /d where V is potential between the plates and d is distance between them
E = 300 / 5 x 10⁻³
= 60 x 10³ N/c
Force on electron = q E where q is charge on the electron
F = 1.6 X 10⁻¹⁹ X 60 X 10³ = 96 X 10⁻¹⁶ N.
Acceleration a = force / mass
a = 96 x 10⁻¹⁶/ mass = 96 x 10⁻¹⁶ / 9.1 x 10⁻³¹
= 10.55 x 10¹⁵ m / s²
For midway , distance travelled
s = 2.5 x 10⁻³ m
s = 1\2 a t²
t = 
= 
t = .474 x 10⁻¹⁸ s
For striking the plate time is calculated as follows
t =
[/tex]
t = 0.67 x 10⁻¹⁸ s