Here, you can derive that by numerical method, as follows:
F = m.a
m = F/a
So, here we can see when we decrease one, other increase by same effect; we can say they are "Indirectly Proportional" to each other!
Hope this helps!
Answer:
Period of the signal.
Explanation:
So, this question is all about a concept in physics or astronomy which is called or known as Radiation Astronomy and Galactic Nuclei that are active. This concept talks most about Quasars; a powerful radiating object which derives its power from black holes.
When You take a look at Quasars, we get the to know that the more you think you can see, the more they move away from us.
Thus, when "You are observing the radiation from a distant active galaxy and you notice that the amplitude of the signal varies in strength regularly over a certain period. The maximum possible size for the source of this radiation can now be calculated from the "PERIOD OF THE SIGNAL.
NB: not the amplitude but the period.
Answer:
v_f = 24.3 m / s
Explanation:
A) In this exercise there is no friction so energy is conserved.
Starting point. On the roof of the building
Em₀ = K + U = ½ m v₀² + m g y₀
Final point. On the floor
Em_f = K = ½ m v_f²
Emo = Em_g
½ m v₀² + m g y₀ = ½ m v_f²
v_f² = v₀² + 2 g y₀
let's calculate
v_f = √(10² + 2 9.8 25)
v_f = 24.3 m / s
I would say that this is the first law of thermodynamics.