Answer:
2.5m/s2
Explanation:
The following were obtained from the question:
F = 600N
M = 240 kg
a =?
Recall: F = Ma
a = F/M
a = 600/240
a = 2.5m/s2
Therefore, the acceleration of the motorcycle is 2.5m/s2
The force and the air resistance depends on the mechanical enserfy.
Answer:
Yes
Explanation:
Newton's law of universal gravitation is usually stated that every particle attracts every other particle in the universe with a force which is directly proportional to the product of their masses(m1 and m2) and inversely proportional to the square of the distance between their centers(r).
F = Gm1m2/r²
This is a general physical law derived from
empirical observations by what Isaac Newton called inductive reasoning.
when distance is doubled the gravitational force will be reduced by quarter not half.
Answer:
(a) 
(b) 
(c) 
Explanation:
(a) According to Newton's second law, the acceleration of a body is directly proportional to the force exerted on it and inversely proportional to it's mass.

(b) According to Newton's third law, the force that the sled exerts on the girl is equal in magnitude but opposite in the direction of the force that the girl exerts on the sled:

(c) Using the kinematics equation:

For the girl, we have
and
. So:

For the sled, we have
. So:

When they meet, the final positions are the same. So, equaling (1) and (2) and solving for t:

Now, we solve (1) for 

True conditions
Efficiency of Heat Exchanger are as below:
the heat exchange process between two fluids with different temperatures using solid walls occurs in various engineering applications. The tool to achieve this exchange is a heat exchanger. Some applications like air conditioning, power generation, waste heat recovery, and chemical processing use this device.
The basis of the work of a heat exchanger is that the hot fluid enters the heat exchanger at temperature T1 and its heat capacity is Chot. Also, the cold fluid with the heat capacity of Ccold enters temperature t1; in the meantime, the hot fluid loses its heat, and its temperature drops to T2. It delivers heat to the cold fluid to increase its temperature to t2 and leave the heat exchanger at this temperature.
To learn more about Heat Exchanger
brainly.com/question/22595817
#SPJ4