The mass of the second car is 1434.21 kg
<u>Explanation:</u>
Using law of conservation of momentum,

Given:
= 1090 kg
= 11 m/s
= 0
v = 4.75 m/s
We need to find 
When substituting the given values in the above equation, we get





Answer:
141.56 N.
Explanation:
Data given:
Weight of the box= 200.2 N
Angle with the horizontal= 37.1°
Solution;
Gravitational force on the box,
= weight of the box
= 200.2 N
Component of gravitational force along plane =
( ∅ )
= W * (sin∅)
= (200.1) * sin (37.1°)
= 141.56 N
Explanation:
Average power = change in energy / change in time
P = ΔE / Δt
P = (½ mv²) / t
P = (½ (0.825 kg) (0.620 m/s)²) / (0.021 s)
P = 7.55 Watts
Answer:
The Sun's gravitational pull keeps our planet orbiting the Sun. The motion of the Moon is affected by the gravity of the Sun and Earth. Moon's gravity pulls on the Earth and makes the tides rise and fall.
We can solve the problem by using the first law of thermodynamics:

where
is the change in internal energy of the system
is the heat absorbed by the system
is the work done by the system on the surrounding
In this problem, the work done by the system is

with a negative sign because the work is done by the surrounding on the system, while the heat absorbed is

with a negative sign as well because it is released by the system.
Therefore, by using the initial equation, we find
