1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sedbober [7]
3 years ago
9

A 3.0 kg block is pushed by a 14 N force. If µ = 0.6, will the block move?

Physics
1 answer:
Anna71 [15]3 years ago
4 0

Answer:

The block will not move.

Explanation:

We'll begin by calculating the frictional force. This can be obtained as follow:

Coefficient of friction (µ) = 0.6

Mass of block (m) = 3 Kg

Acceleration due to gravity (g) = 10 m/s²

Normal reaction (R) = mg = 3 × 10 = 30 N

Frictional force (Fբ) =?

Fբ = µR

Fբ = 0.6 × 30

Fբ = 18 N

From the calculations made above, the frictional force of the block is 18 N. Since the frictional force (i.e 18 N) is bigger than the force applied (i.e 14 N), the block will not move.

You might be interested in
An interference pattern is produced by light with a wavelength 550 nm from a distant source incident on two identical parallel s
ad-work [718]

Answer:

a

 \theta  =  0.0022 rad

b

 I  =  0.000304 I_o

Explanation:

From the question we are told that  

   The  wavelength of the light is \lambda  = 550 \ nm  =  550 *10^{-9} \ m

    The  distance of the slit separation is  d = 0.500 \ mm = 5.0 *10^{-4} \ m

 

Generally the condition for two slit interference  is  

     dsin \theta =  m \lambda

Where m is the order which is given from the question as  m = 2

=>    \theta  =  sin ^{-1} [\frac{m \lambda}{d} ]

 substituting values  

      \theta  =  0.0022 rad

Now on the second question  

   The distance of separation of the slit is  

       d =  0.300 \ mm  =  3.0 *10^{-4} \ m

The  intensity at the  the angular position in part "a" is mathematically evaluated as

      I  =  I_o  [\frac{sin \beta}{\beta} ]^2

Where  \beta is mathematically evaluated as

       \beta  =  \frac{\pi *  d  *  sin(\theta )}{\lambda }

  substituting values

     \beta  =  \frac{3.142  *  3*10^{-4}  *  sin(0.0022 )}{550 *10^{-9} }

    \beta  = 0.06581

So the intensity is  

    I  =  I_o  [\frac{sin (0.06581)}{0.06581} ]^2

   I  =  0.000304 I_o

3 0
3 years ago
A 150kg person stands on a compression spring with spring constant 10000n/m and nominal length of 0.50.what is the total length
Ivahew [28]

Answer:

<em>The total length of the spring would be 0.65 m</em>

Explanation:

The Concept

Hooke's law evaluates the increment of  spring in relation to the force acting on the body. Hooke's law states that for a spring undergoing deformation, the  force applied is directly proportional to the deformation experienced by the spring. Hooke's law is represented thus;

F = k x ..................1

where F is the force applied to the spring

k is the spring constant

x is the spring stretch or extension

Step by Step Calculations

We have to obtain x before adding it to the nominal length, We make x the subject formula in equation 1;

x = F/k

but F = m x g

so, x = (m x g)/k

given that, the mass of the person m =150 kg

g is the acceleration due to gravity = 9.81 m/s^{2}

k is the spring constant = 10000 N/m

then x = (9.81 m/s^{2} x 150 kg)/10000 N/m

x = 0.14715 m

the extension experienced by the spring after the compression is 0.14715 m

The total length of the spring would be;

L = 0.14715 m + 0.5 m = 0.64715

L ≈  0.65 m

Therefore the total length of the spring would be 0.65 m

4 0
3 years ago
8. Three grams of Bismuth-218 decay to 0.375 grams in one hour. What is the half-
Evgen [1.6K]

Answer: 0.333 h

Explanation:

This problem can be solved using the <u>Radioactive Half Life Formula</u>:  

A=A_{o}.2^{\frac{-t}{H}} (1)  

Where:  

A=0.375 g is the final amount of the material  

A_{o}=3 g is the initial amount of the material  

t=1 h is the time elapsed  

H is the half life of the material (the quantity we are asked to find)  

Knowing this, let's substitute the values and find h from (1):

0.375 g=(3 g)2^{\frac{-1h}{H}} (2)  

\frac{0.375 g}{3 g}=2^{\frac{-1h}{H}} (3)  

Applying natural logarithm in both sides:

ln(\frac{0.375 g}{3 g})=ln(2^{\frac{-1 h}{H}}) (4)  

-2.079=-\frac{1 h}{H}ln(2) (5)  

Clearing H:

H=\frac{-1h}{-2.079}(0.693) (6)  

Finally:

h=0.333 h This is the half-life of the Bismuth-218 isotope

4 0
3 years ago
When landing after a spectacular somersault, a 35.0 kg gymnast decelerates by pushing straight down on the mat. calculate the fo
Sliva [168]

The deceleration experienced by the gymnast is the 9 times of the acceleration due to gravity.

Now from Newton`s  first law, the net force on gymnast,

F_{net} =F-W=ma

Here, W is the weight of the gymnast and a is the acceleration experienced by the gymnast (9\times g acceleration due to gravity)  

Therefore,

F= ma+W OR F=ma+mg=m(g+a)

Given m = 30 kg anda=9\times g=9\times 9.8 m/s^{2} =88.2 m/s^{2}

Substituting these values in above formula and calculate the force exerted by the gymnast,  

F=(40 kg) (88.2 m/s^{2} +9.8 m/s^{2} )

F=3.537\times10^{3}N

6 0
3 years ago
3. Consider a locomotive and the rest of a freight train to be a single object. Suppose the locomotive is pulling the train up a
Nonamiya [84]

Answer:

Action - Pulling up the train.

Reaction - Friction on the locomotive

Explanation:

Locomotive is pulling the train upwards ,

Which is the action force applied by the locomotive,

As a reaction locomotive will be pulled by the train which is the reaction of pulling

Now, considering it as a action on locomotive , friction force will act on it as a reaction upwards which will result to move it upwards.

For train action is pulling up by locomotive and reaction will be friction acting on it downwards.

6 0
2 years ago
Other questions:
  • Which of the following is an example of energy changing from one form to another?
    8·2 answers
  • What constant acceleration in si units must a car have to go from zero to 60 mph in 10s. what fraction of g is this? How far has
    5·1 answer
  • What is 18000 expressed in scientific notation​
    11·2 answers
  • What is the definition for energy?
    15·1 answer
  • an object that is 8 cm tall is located 2.5 m in front of a plane mirror. The image formed by the mirror appears to be. Find di a
    15·1 answer
  • A town is considering building a biodiesel power plant that would burn biomass to generate electricity. Which of the following c
    8·2 answers
  • A shotgun of mass 3kg fires a bullet of 0.1kg at a velocity of 250m/s. What is the recoil velocity of the gun
    5·1 answer
  • What is the density of the liquid
    8·2 answers
  • At which latitude would tropical rain forests be most likely?
    15·1 answer
  • Determine the number of milliliters in a volume of 2.81 fluid ounces
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!