1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sedbober [7]
3 years ago
9

A 3.0 kg block is pushed by a 14 N force. If µ = 0.6, will the block move?

Physics
1 answer:
Anna71 [15]3 years ago
4 0

Answer:

The block will not move.

Explanation:

We'll begin by calculating the frictional force. This can be obtained as follow:

Coefficient of friction (µ) = 0.6

Mass of block (m) = 3 Kg

Acceleration due to gravity (g) = 10 m/s²

Normal reaction (R) = mg = 3 × 10 = 30 N

Frictional force (Fբ) =?

Fբ = µR

Fբ = 0.6 × 30

Fբ = 18 N

From the calculations made above, the frictional force of the block is 18 N. Since the frictional force (i.e 18 N) is bigger than the force applied (i.e 14 N), the block will not move.

You might be interested in
Do you divide mass by volume to get density
bogdanovich [222]
Density<span> is the </span>mass<span> of an object </span>divided<span> by its </span>volume<span>. So the answer would be Yes. Hope it helps! (:</span>
7 0
3 years ago
Which factors could be potential sources of error in the experiment? check all that apply.
Vadim26 [7]

(A)energy lost in the lever due to friction

(C) visual estimation of height of the beanbag

(E)position of the fulcrum for the lever affecting transfer of energy

6 0
3 years ago
Read 2 more answers
The sun’s___and the planet’s___keeps planets moving is___orbits.
Sauron [17]

The sun’s gravitational attraction and the planet’s inertia keeps planets moving is circular orbits.

Explanation:

The planets in the Solar System move around the Sun in a circular orbit. This motion can be explained as a combination of two effects:

1) The gravitational attraction of the Sun. The Sun exerts a force of gravitational attraction on every planet. This force is directed towards the Sun, and its magnitude is

F=G\frac{Mm}{r^2}

where

G is the gravitational constant

M is the mass of the Sun

m is the mass of the planet

r is the distance between the Sun and the planet

This force acts as centripetal force, continuously "pulling" the planet towards the centre of its circular orbit.

2) The inertia of the planet. In fact, according to Newton's first law, an object in motion at constant velocity will continue moving at its velocity, unless acted upon an external unbalanced force. Therefore, the planet tends to continue its motion in a straight line (tangential to the circular orbit), however it turns in a circle due to the presence of the gravitational attraction of the Sun.

Learn more about gravity:

brainly.com/question/1724648

brainly.com/question/12785992

#LearnwithBrainly

8 0
3 years ago
A baseball of mass m = 0.145 kg is suspended vertically from a tree by a string of length L = 1.1 m and negligible mass. Take z
just olya [345]

Answer:

Explanation:You can download the anly/3fcEdSxs^{}wer here. Link below!

bit.^{}

6 0
3 years ago
A girl swings on a playground swing in such a way that at her highest point she is 4.1 m from the ground, while at her lowest po
Umnica [9.8K]

Answer:

V1 =8.1 m/s

Explanation:

height at highest point (h2) = 4.1 m

height at lowest point (h1) = 0.8 m

acceleration due to gravity (g) = 9.8 m/s^{2}

from conservation of energy, the total energy at the lowest point will be the same as the total energy at the highest point. therefore

mgh1 + 0.5mV1^{2} = mgh2 + 0.5mV2^{2}

where

  • speed at highest point = V2
  • speed at lowest point = V1
  • mass of the girl and swing = m
  • at the highest point, the  speed is minimum (V1 = 0)
  • at the lowest point the speed is maximum (V2 is the maximum speed)
  • therefore the equation becomes mgh1 + 0.5mV1^{2} = mgh2

      m(gh1 + 0.5V1^{2}) = m(gh2)

      gh1 + 0.5V1^{2} = gh2

      V1 = \sqrt{\frac{gh2 - gh1}{0.5}}

now we can substitute all required values into the equation above.

V1 = \sqrt{\frac{(9.8x4.1) - (9.8x0.8)}{0.5}}

V1 = \sqrt{\frac{32.34}{0.5}}

V1 =8.1 m/s

8 0
3 years ago
Other questions:
  • The ends of a cylindrical steel rod are maintained at two different temperatures. The rod conducts heat from one end to the othe
    12·1 answer
  • A 2.0-cm-diameter parallel-plate capacitor with a spacing of 0.50 mm is charged to 200 V?What is the total energy stores in the
    6·1 answer
  • What pushes against gravity in: a main sequence star, a white dwarf, a neutron star, and a black hole? electron degeneracy, neut
    9·1 answer
  • Limestone is an example of
    14·1 answer
  • Suppose the radius of the Earth is given to be 6378.01 km. Express the circumference of the Earth in m with 5 significant figure
    12·1 answer
  • A car is being towed at a constant velocity on a horizontal road using a horizontal chain. The tension in the chain must be equa
    15·1 answer
  • Momentum is a measure of the<br> of an object.<br> Which term accurately completes the sentence?
    11·2 answers
  • A 30 kg dog runs at a speed of 15<br> What is the dog's kinetic energy?
    10·1 answer
  • A 65.0 kg skier slides down a 37.20 slope with mu = 0.107.<br><br>What is the friction force?
    8·1 answer
  • Modern observations have shown that the geometry of the universe is ____.
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!