First of all, let's write the equation of motions on both horizontal (x) and vertical (y) axis. It's a uniform motion on the x-axis, with constant speed

, and an accelerated motion on the y-axis, with initial speed

and acceleration

:


where the negative sign in front of g means the acceleration points towards negative direction of y-axis (downward).
To find the distance from the landing point, we should find first the time at which the projectile hits the ground. This can be found by requiring

Therefore:

which has two solutions:

is the time of the beginning of the motion,

is the time at which the projectile hits the ground.
Now, we can find the distance covered on the horizontal axis during this time, and this is the distance from launching to landing point:
Because they are placed in different habitable zones
Answer:
speed of light simulating traveling at the speed of light. Speed of light, speed at which light waves propagate through different materials. In particular, the value for the speed of light in a vacuum is now defined as exactly 299,792,458 metres per second
The speed of sound is the distance travelled per unit of time by a sound wave as it propagates through an elastic medium
Answer:
TAJUK
Explanation:
Sebab saya suka makan ayam goreng, esok saya nak pesan daripada kedai pak abu, terima kasih bosku