Answer:
20.62361 rad/s
489.81804 J
Explanation:
= Initial moment of inertia = 9.3 kgm²
= Final moment of inertia = 5.1 kgm²
= Initial angular speed = 1.8 rev/s
= Final angular speed
As the angular momentum of the system is conserved

The resulting angular speed of the platform is 20.62361 rad/s
Change in kinetic energy is given by

The change in kinetic energy of the system is 489.81804 J
As the work was done to move the weight in there was an increase in kinetic energy
The answer here would be infrared waves. Hot objects and humans give off heat in the form of infrared light, thermal imaging technology in the goggles enable them to catch this light emitted by these objects
Answer:
option (c) is correct
Explanation:
Half life of a substance is the time in which the element becomes half of is initial value.
half life, T = 8 days
Amount remaining, N = 10 % of original value
Let the original value is No.
N = 10% of No
N = 0.1 No
Let the time taken is t and the decay constant is λ.
The relation between the decay constant and the half life is given by

Us the equation of radioactivity



Taking natural log on both the sides, we get
0.08664 t = 2.303
t = 26.6 days
Mechanical energy equals the sum of potential and kinetic energy. During the process, all PE converts into KE, assuming air resistance is neglected. So, the mechanical energy does not change and is equal to the initial potential energy.
ME
=mgh
=0.005 x 9.81 x 3
=0.147J