Answer:
L = 40 cm
Explanation:
A microscope is an optical instrument built by two lenses in such a way that the image of the first is formed within the distance of the other (eyepiece), so that the latter creates an enlarged virtual image of the object, for which the magnification of the microscope is the same to the multiplication of the magnification of each lens
M = - L / f₀ (25 cm /
)
where fo and fe are the focal lengths of the objective and eyepiece, 25 cm is the near vision distance and L is the length of the microscope
L = - M f_{o} f_{e} / 25
let's calculate
L = - (-100) 2 5/25
L = 40 cm
That statement is <em>false</em>.
"Condense" is what a gas does when it turns into liquid, and that's something that happens when the gas is cooled, not heated.
Answer:
if the two polarizers have the same direction the transmitted light is 50% of the incident and if the two polarizers are at 90º the transmitted light is zero
Explanation:
The incident light is generally random, that is, it does not have a polarization plane, when the first polarized stops by half, this already polarized light arrives at the second polarizer and the causticity passes
I = I₀ cos² θ
therefore if the two polarizers have the same direction the transmitted light is 50% of the incident and if the two polarizers are at 90º the transmitted light is zero
The repeated rising and sinking of water during boiling is due to convection. It <span>is heat transfer by mass motion of a fluid such as air or water when the heated fluid is caused to move away from the source of heat, carrying energy with it. Hope this answers the question.</span>
Answer:
equation of motion for the mass is x(t) = e^αt ( C1 cos √{α² - ω²} t + C2 sin √{α² - ω²} t )
Explanation:
Given data
mass = 3 slugs = 3 * 32.14 = 96.52 lbs
constant k = 9 lbs/ft
Beta = 6lbs * s/ft
mass is pulled = 1 ft below
to find out
equation of motion for the mass
solution
we know that The mass is pulled 1 ft below so
we will apply here differential equation of free motion i.e
dx²/dt² + 2 α dx/dt + ω² x =0 ........................1
here 2 α = Beta / mass
so 2 α = 6 / 96.52
α = 0.031
α² = 0.000961 ...............2
and
ω² = k/mass
ω² = 9 /96.52
ω² = 0.093 ..................3
we can say that from equation 2 and 3 that α² - ω² = -0.092239
this is less than zero
so differential equation is
x(t) = e^αt ( C1 cos √{α² - ω²} t + C2 sin √{α² - ω²} t )
equation of motion for the mass is x(t) = e^αt ( C1 cos √{α² - ω²} t + C2 sin √{α² - ω²} t )