Answer:
u = - 38.85 m/s^-1
Explanation:
given data:
acceleration = 2.10*10^4 m/s^2
time = 1.85*10^{-3} s
final velocity = 0 m/s
from equation of motion we have following relation
v = u +at
0 = u + 2.10*10^4 *1.85*10^{-3}
0 = u + (21 *1.85)
0 = u + 38.85
u = - 38.85 m/s^-1
negative sign indicate that the ball bounce in opposite directon
The answer is attract. Hope it helps! :)
K.E. = 1/2 mv²
K.E. is directly proportional to v^2
So, when K.E. increase by 2, K.E. increase by root. 2
v' = 1.41v
original v value was 3 so, final would be:
v' = 1.41*3 = 4.23
After round-off to it's tenth value, it will be:
v' = 4.2
So, option B is your answer!
Hope this helps!
Sound waves travel faster through <em>solids</em> than they do through gases or liquids. <em>(C) </em>They don't travel through vacuum at all.
Example:
Speed of sound in normal air . . . around 340 m/s
Speed of sound in water . . . around 1,480 m/s
Speed of sound in iron . . . around 5,120 m/s