Answer:
mass=0.50kg
force=25N
acceleration =?
Now,
force=m×a
25=0.50×a
25÷0.50=a
50=a
acceleration =50m/s^2 answer!!!!
hope this may help you!!!!
Acceleration
Explanation:
Acceleration is a physical quantity that expresses the change in the velocity of a body per unit of time.
Acceleration = 
V is the initial velocity
U is the final velocity
T is the time
It is has a unit of m/s²
Learn more:
Acceleration brainly.com/question/3820012
#learnwithBrainly
Answer:
Explanation:
Given
Resistor A has length 
and Resistor B has Length 
and Resistance is given by

Considering
and A to be constant thus
because 
(a)When they are connected in series
As the current in series is same and power is 
therefore
as R is greater for second resistor
(b)if they are connected in Parallel
In Parallel connection Voltage is same

resistance of 2 is greater than 1 thus Power delivered by 1 is greater than 2
Answer:
Towards the west
Explanation:
Magnetic force is the interaction between a moving charged particle and a magnetic field.
Magnetic force is given as
F = q (V × B)
Where F is the magnetic force
q is the charge
V is the velocity
B is the magnetic field
V×B means the cross product of the velocity and the magnetic field
NOTE:
i×i=j×j×k×k=0
i×j=k. j×i=-k
j×k=i. k×j=-i
k×i=j. i×k=-j
So, if the electron is moving southward, then, it implies that the velocity of it motion is southward, so the electron is in the positive z-direction
Also, the electron is curved upward due to the magnetic field, this implies that the force field is directed up in the positive y direction.
Then,
V = V•k
F = F•j
Then, apply the theorem
F •j = q ( V•k × B•x)
Let x be the unknown
From vector k×i =j.
This shows that x = i
Then, the magnetic field point in the direction of positive x axis, which is towards the west
You can as well use the Fleming right hand rule
The thumb represent force
The index finger represent velocity
The middle finger represent field
Answer:
V = 0.0723 volts = 72.3 milivolts
Explanation:
The emf induced in the rod is the motional emf due to the magnetic field. This motional emf can be calculated by the following formula:

where,
V = Motional EMF = ?
v = speed of rod = 12.5 m/s
B = Magnetic Field = 6.23 mT = 0.00623 T
l = Length of rod = 92.9 cm = 0.929 m
θ = angle between v and B = 90°
Therefore,

<u>V = 0.0723 volts = 72.3 milivolts</u>