Answer:
<h3>The answer is 3.44 g/cm³</h3>
Explanation:
The density of a substance can be found by using the formula

From the question
mass = 17.2 g
volume = 5 cm³
We have

We have the final answer as
<h3>3.44 g/cm³</h3>
Hope this helps you
According to molecular orbital theory, regions of wave function with highest probability of finding electrons are areas with constructive interference.
An electron is a negatively charged subatomic particle that can exist either free or bound to an atom (not bound). A bound electron is one of the three primary types of particles that make up an atom, along with protons and neutrons. Protons, neutrons, and electrons combined make up the atom's nucleus. A proton's positive charge balances an electron's negative charge. When an atom has an equal number of protons and electrons, it is said to be in a neutral state. Electrons are distinct from other particles in a number of ways. They have a much lower mass, are found outside the nucleus, and exhibit both wave- and particle-like characteristics. The electron is a basic particle.
To know more about electrons visit :brainly.com/question/23966811
#SPJ4
The pressure calculated as the difference between the net hydrostatic pressure and the net colloid osmotic pressure is known as: filtration pressure.
<h3>What is pressure?</h3>
Pressure can be defined as a measure of the force exerted per unit area of an object or body. Thus, it is usually measured in Newton per meter square.
<h3>The types of pressure.</h3>
In Science, there are different types of pressure and these include the following:
Filtration pressure is a pressure that is typically calculated as the difference between the net hydrostatic pressure and the net colloid osmotic pressure. Also, it promotes the filtration of fluid through a membrane.
Read more on pressure here: brainly.com/question/24827501
Answer:
d. the conjugate base of the weak acid
Explanation:
The strong base (BOH) is completely dissociated in water:
BOH → B⁺ + OH⁻
The resulting conjugate acid (OH⁻) is a weak acid, so it remains in solution as OH⁻ ions.
By other hand, the weak acid (HA) is only slightly dissociated in water:
HA ⇄ H⁺ + A⁻
The resulting conjugate base (A⁻) is a weak base. Thus, it reacts with H⁺ ions from water to form HA, increasing the concentration of OH⁻ ions in the solution.
Therefore, the resulting solution will have a pH > 7 (basic).