1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Anastasy [175]
4 years ago
14

Which equation represents the equation of the parabola with focus (-3 3) and directrix y=7?

Mathematics
1 answer:
Artemon [7]4 years ago
6 0

Answer:

The equation y=\frac{-x^2-6x+31}{8} represents the equation of the parabola with focus (-3, 3) and directrix y = 7.

Step-by-step explanation:

To find the equation of the parabola with focus (-3, 3) and directrix y = 7. We start by assuming a general point on the parabola (x, y).

Using the distance formula d = \sqrt {\left( {x_1 - x_2 } \right)^2 + \left( {y_1 - y_2 } \right)^2 }, we find that the distance between (x, y) is

\sqrt{(x+3)^2+(y-3)^2}

and the distance between (x, y) and the directrix y = 7 is

\sqrt{(y-7)^2}.

On the parabola, these distances are equal so, we solve for y:

\sqrt{(x+3)^2+(y-3)^2}=\sqrt{(y-7)^2}\\\\\left(\sqrt{\left(x+3\right)^2+\left(y-3\right)^2}\right)^2=\left(\sqrt{\left(y-7\right)^2}\right)^2\\\\x^2+6x+y^2+18-6y=\left(y-7\right)^2\\\\x^2+6x+y^2+18-6y=y^2-14y+49\\\\y=\frac{-x^2-6x+31}{8}

You might be interested in
Assist Please<br>show work​
Rama09 [41]

Answer:

the profit is $8

Step-by-step explanation:

so Susan started with 0, lost 11, equals -11

earned 18, =7

lost 7, =0

earned 8, =$8 for the final answer

4 0
4 years ago
If you drive from New York to Dallas and then from Dallas to Chicago, how many miles would you drive?
frozen [14]

3 hours and 14 minutes distance from dallas is approximently 2240 killometers

hope this helped good lucky =)

6 0
3 years ago
Read 2 more answers
Integrating sums of functions
Andrei [34K]

Answer:

(a) -12

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right<u> </u>

Equality Properties

  • Multiplication Property of Equality
  • Division Property of Equality
  • Addition Property of Equality
  • Subtraction Property of Equality

<u>Calculus</u>

Integrals

Integration Rule [Reverse Power Rule]:                                                                    \displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C

Integration Property [Swapping Limits]:                                                                \displaystyle \int\limits^b_a {f(x)} \, dx = -\int\limits^a_b {f(x)} \, dx

Integration Property [Multiplied Constant]:                                                           \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

Integration Property [Addition/Subtraction]:                                                         \displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx

Integration Property [Splitting Integral]:                                                                \displaystyle \int\limits^c_a {f(x)} \, dx = \int\limits^b_a {f(x)} \, dx + \int\limits^c_b {f(x)} \, dx

Integration Rule [Fundamental Theorem of Calculus 1]:                                      \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)  

Step-by-step explanation:

<u>Step 1: Define</u>

<u />\displaystyle \int\limits^6_4 {f(x)} \, dx = 5<u />

<u />\displaystyle \int\limits^4_{10} {f(x)} \, dx = 8<u />

<u />\displaystyle \int\limits^{10}_6 {[4f(x) + 10]} \, dx<u />

<u />

<u>Step 2: Solve Pt. 1</u>

  1. [Integral] Rewrite [Integration Property - Addition]:                                     \displaystyle \int\limits^{10}_6 {[4f(x) + 10]} \, dx = \int\limits^{10}_6 {4f(x)} \, dx + \int\limits^{10}_6 {10} \, dx
  2. [Integral] Rewrite [Integration Property - Multiplied Constant]:                   \displaystyle \int\limits^{10}_6 {[4f(x) + 10]} \, dx = 4\int\limits^{10}_6 {f(x)} \, dx + 10\int\limits^{10}_6 {} \, dx

<u>Step 3: Redefine</u>

<em>Manipulate the given integral values.</em>

  1. [Integrals] Combine [Integration Property - Splitting Integral]:                     \displaystyle \int\limits^6_4 {f(x)} \, dx + \int\limits^4_{10} {f(x)} \, dx = \int\limits^6_{10} {f(x)} \, dx
  2. [Integral] Rewrite:                                                                                           \displaystyle \int\limits^6_{10} {f(x)} \, dx = \int\limits^6_4 {f(x)} \, dx + \int\limits^4_{10} {f(x)} \, dx
  3. [Integral] Substitute in integrals:                                                                    \displaystyle \int\limits^6_{10} {f(x)} \, dx = 5 + 8
  4. [Integral] Add:                                                                                                 \displaystyle \int\limits^6_{10} {f(x)} \, dx = 13
  5. [Integral] Rewrite [Integration Property - Swapping Limits]:                        \displaystyle -\int\limits^{10}_6 {f(x)} \, dx = 13
  6. [Integral] [Division Property of Equality] Isolate integral:                             \displaystyle \int\limits^{10}_6 {f(x)} \, dx = -13

<u>Step 4: Solve Pt. 2</u>

  1. [Integral] Substitute in integral:                                                                     \displaystyle \int\limits^{10}_6 {[4f(x) + 10]} \, dx = 4(-13) + 10\int\limits^{10}_6 {} \, dx
  2. [Integral] Integrate [Integration Rule - Reverse Power Rule]:                      \displaystyle \int\limits^{10}_6 {[4f(x) + 10]} \, dx = 4(-13) + 10(x) \bigg| \limits^{10}_6
  3. [Integral] Evaluate [Integration Rule - FTC 1]:                                               \displaystyle \int\limits^{10}_6 {[4f(x) + 10]} \, dx = 4(-13) + 10(10 - 6)
  4. [Integral] (Parenthesis) Subtract:                                                                   \displaystyle \int\limits^{10}_6 {[4f(x) + 10]} \, dx = 4(-13) + 10(4)
  5. [Integral] Multiply:                                                                                           \displaystyle \int\limits^{10}_6 {[4f(x) + 10]} \, dx = -52 + 40
  6. [Integral] Add:                                                                                                 \displaystyle \int\limits^{10}_6 {[4f(x) + 10]} \, dx = -12

Topic: AP Calculus AB/BC

Unit: Integration

Book: College Calculus 10e

8 0
3 years ago
Round 0.4874456952 to 3 significant figures​
dexar [7]

Answer:

To round to three significant figures, look at the fourth significant figure. It's a 5 , so round up.

To round to four significant figures, look at the fifth significant figure. It's a 1 , so round down.

To round to two significant figures, look at the third significant figure. It's an 8 , so round up.

Step-by-step explanation:

use this trick

bye

mark brainliest

7 0
3 years ago
Read 2 more answers
Jasmine is traveling at 45 miles per hour. At that same rate, how long will it take her to travel 135 miles?
mina [271]
45\ miles\ per\ 1\ hour\\&#10;135\ miles\ per\ x\ hours\\\\&#10;making\ proportion:\\&#10;45-1\\&#10;135-x\\\\&#10;cross\ multiplication\\\\&#10;45x=135\ \ \ | divide\ by\ 45\\\\&#10;x=3\\\\&#10;It\ will\ take\ 3\ hours.
7 0
3 years ago
Read 2 more answers
Other questions:
  • In the diagram, mFLI is 106°, mFLG = (2x – 1)°, mGLH = (x + 17)°, and mHLI = (4x – 15)°. What is the measure of the smallest ang
    8·2 answers
  • -6x-4(-7x-13)=-58 <br> What the answer
    11·1 answer
  • Sasha is tracking the results of the water balloon contest. She wants to determine how high Maggie’s balloon is when it is direc
    6·1 answer
  • -5q- -9q - -14=2 solve for q
    9·1 answer
  • When three or more lines intersect at one point they are ______.
    8·1 answer
  • The percent increase in Americans in prison for drug related offenses from 1980 to 2015 was 1048%. In 1980 the number of America
    10·1 answer
  • Use the power property to rewrite log3x9.
    16·2 answers
  • during a sale , a shop allows discount of the marked price of clothing . What will a costumer pay for a dress with a marked pric
    9·2 answers
  • Emir arrived at the doctor's office at 2:20 P.M. He finally saw the doctor at 3:14 P.M. How long did Emir have to wait?
    15·1 answer
  • Help its due soon!!!!!!!!!
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!