Not sure but i will say D
Answer:
Waves with high frequencies have shorter wavelengths that work better than low frequency waves for successful echolocation.
Explanation:
To understand why high-frequency waves work better than low frequency waves for successful echolocation, first we have to understand the relation between frequency and wavelength.
The relation between frequency and wavelength is given by
λ = c/f
Where λ is wavelength, c is the speed of light and f is the frequency.
Since the speed of light is constant, the wavelength and frequency are inversely related.
So that means high frequency waves have shorter wavelengths, which is the very reason for the successful echolocation because waves having shorter wavelength are more likely to reach and hit the target and then reflect back to the dolphin to form an image of the object.
Thus, waves with high frequencies have shorter wavelengths that work better than low frequency waves for successful echolocation.
<h3>Question -:</h3>
The Earth orbits around the sun because the gravitational force that the sun
exerts on the Earth:
O A. causes Earth's acceleration toward the sun.
O B. is very small because the sun is so far from the Earth.
O c. is smaller than the force the Earth exerts on the sun.
O D. pushes the Earth away from the sun.
<h3>Answer -:</h3>
O A. causes Earth's acceleration toward the sun.
<em>I </em><em>hope </em><em>this</em><em> </em><em>helps</em><em>,</em><em> </em><em>have </em><em>a </em><em>nice </em><em>time </em><em>ahead!</em>
An element is composed of millions of atoms and a compound is composed of molecules. When an atom reacts with another atom, a molecule is formed.
For example, if sodium reacts with chloride, it forms sodium chloride (Common salt). Here, sodium and chloride are elements and sodium chloride is a molecule. In this way, millions of atoms of sodium reacts with chloride and forms common salt.
Again, when the common salt is mixed with other compounds such as water, it forms a mixture.