Answer:
D gravity
Explanation:
please mark me brainliest
Answer: only the third option. [Vector A] dot [vector B + vector C]
The dot between the vectors mean that the operation to perform is the "scalar product", alson known as "dot product".
This operation is only defined between two vectors, not one scalar and one vector.
When you perform, in the first option, the dot product of any ot the first and the second vectors you get a scalar, then you cannot make the dot product of this result with the third vector.
For the second option, when you perform the dot product of vectar B with vector C you get a scalar, then you cannot make the dot product ot this result with the vector A.
The third option indicates that you sum the vectors B and C, whose result is a vector and later you make the dot product of this resulting vector with the vector A. Operation valid.
The fourth option indicates the dot product of a scalar with the vector A, which we already explained that is not defined.
Answer:
Part 1
20 N
Part 2
0.4 m/s²
Part 3
4 m/s
Explanation:
The force which pulls the sled right = 50 N
The friction force exterted towards left by the snow = -30 N
The mass of the sled = 50 kg
Part 1
The sum of the forces on the sled, F = 50 N + (-30) N = 20 N
Part 2
The acceleration of the sled is given as follows;
F = m·a
Where;
m = The mass of the sled
a = The accelertion
a = F/m
∴ a = (20 N)/(50 kg) = 0.4 m/s²
The acceleration of the sled, a = 0.4 m/s²
Part 3
The initial velocity of the sled, u = 2 m/s
The kinematic equation of motion to determine the speed of the sled is v = u + a·t
The speed, <em>v</em>, of the sled after t = 5 seconds is therefore;
v = 2 m/s + 0.4 m/s² × 5 s = 4 m/s.
Answer:
b) Cells will pass through the G1/S checkpoint even if conditions are not ideal for cell division.
Explanation:
In the given problem, if there exists a gain-of-function mutation for the given cell, there would not be the formation of cyclin E when there is the possibility of cells movement via the checkpoint of the G1/S, even when there are non-deal conditions for the division of cell. Thus, the correct option in the lists of options is the option b.