2H2 + O2 ---->2H2O
number of moles in reaction 2 mol 1 mol 2 mol
number of liters in the reaction 2*22.4 L 1*22.4 L 2*22.4L
We can see that volumes of the gases are proportional to coefficients in the reaction ( if gases are under the same conditions), so we can write
2H2 + O2 ---->2H2O
2 L 1 L 2 L
given 40 L ( 25 L) 40 L
We can see that we have excess of O2,
because if 2 L H2 are needed 1 L O2, then 40 L of H2 are needed 20 L O2.
So, limiting reactant is H2, and we will need to calculate Volume of H2O using H2.
2L H2 give 2L H2O(gas), so 40 L H2 give 40 L H2O.
Answer:
O-H bond
Explanation:
Let us work out the electronegativity difference between the elements in each bond in order to decide which of them is most polar.
For the C-O bond
2.55 - 2.2 =0.35
For the F-F bond
3.98 - 3.98 = 0
For the O-H bond
3.44 - 2.2 = 1.24
For the N-H bond
3.04 - 2.2 = 0.84
The O-H bond has the highest electronegativity difference, hence it is he most polar bond.
Answer:

Explanation:
We are asked to find the volume of a solution given the moles of solute and molarity.
Molarity is a measure of concentration in moles per liter. It is calculated using the following formula:

We know there are 0.14 moles of potassium chloride (KCl), which is the solute. The molarity of the solution is 1.8 molar or 1.8 moles of potassium chloride per liter.
- moles of solute = 0.14 mol KCl
- molarity= 1.8 mol KCl/ L
- liters of solution=x
Substitute these values/variables into the formula.

We are solving for x, so we must isolate the variable. First, cross multiply. Multiply the first numerator and second denominator, then the first denominator and second numerator.



Now x is being multiplied by 1.8 moles of potassium chloride per liter. The inverse operation of multiplication is division, so we divide both sides by 1.8 mol KCl/L.


The units of moles of potassium chloride cancel.


The original measurements of moles and molarity have 2 significant figures, so our answer must have the same. For the number we found, that is the thousandth place. The 7 in the ten-thousandth place tells us to round the 7 up to a 8.

There are approximately <u>0.078 liters of solution.</u>
BaSO4 is the correct formula for barium (ll) sulfate
The balanced chemical
reaction will be:
2H2O = 2H2 + O2
<span>We are given the amount of water used in the decomposition reaction. This will be our
starting point.</span>
<span>17.0 g H2O</span> (1 mol H2O/ 18.02 g H2O) (1 mol O2/2
mol <span>H2O</span>) ( 32.00 g O2/1mol O2) = 15.09 g O2
Percent yield = actual yield / theoretical yield x 100
<span>Percent yield =10.2 g / 15.09 g
x 100</span>
Percent yield = 67.58%