Answer:
0.259 kJ/mol ≅ 0.26 kJ/mol.
Explanation:
- To solve this problem, we can use the relation:
<em>Q = m.c.ΔT,</em>
where, Q is the amount of heat absorbed by ice (Q = ??? J).
m is the mass of the ice (m = 100.0 g).
c is the specific heat of water (c of ice = 4.186 J/g.°C).
ΔT is the difference between the initial and final temperature (ΔT = final T - initial T = 21.56°C - 25.0°C = -3.44°C).
<em>∵ Q = m.c.ΔT</em>
∴ Q = (100.0 g)(4.186 J/g.°C)(-3.44°C) = -1440 J = -1.44 kJ.
<em>∵ ΔH = Q/n</em>
n = mass/molar mass = (100.0 g)/(18.0 g/mol) = 5.556 mol.
∴ ΔH = (-1.44 kJ)/(5.556 mol) = 0.259 kJ/mol ≅ 0.26 kJ/mol.
Answer:
Please take this hepful hint :
F = m * a
6.2 = 2.3 * a
a = 2.7 m/s^2
Explanation:
Answer:
Heat
Explanation:
Higher temperatures cause solid solutes to dissolve at a faster rate than normal
First you need to find the amount of mass of Na2CO3 in one moles
(Use periodic chart)
Na= 22.99 x 2 = 45.98
C = 12.01
O = 16.00 x 4 = 64.00
Add the molar masses together to get 121.99
To find how many grams are in 4 moles, times 121.99 by 4
This gives you 487.96
But the questions asks for the answer to be in kilograms nor grams, to change into kilograms divide by 1000
This gets you the answer: 0.49 kg
<span>291 & 2/3 dozen are in 3500 eggs</span>