Answer:
(S)-3-methoxy-3-methylbutan-2-ol
Explanation:
In this case, we have an <u>epoxide opening in acid medium</u>. The first step then is the <u>protonation of the oxygen</u>. Then the epoxide is broken to generate the most <u>stable carbocation</u>. The nucleophile () will attack the carbocation generating a new bond. Finally, the oxygen is <u>deprotonated</u> to obtain an ether functional group and we will obtain the molecule <u>(S)-3-methoxy-3-methylbutan-2-ol</u>.
See figure 1
I hope it helps!
Answer is: adding NaCl will lower the freezing point of a solution.
A solution (in this example solution of sodium chloride) freezes at a lower temperature than does the pure solvent (deionized water).
The higher the solute concentration (sodium chloride), freezing point depression of the solution will be greater.
Equation describing the change in freezing point:
ΔT = Kf · b · i.
ΔT - temperature change from pure solvent to solution.
Kf - the molal freezing point depression constant.
b - molality (moles of solute per kilogram of solvent).
i - Van’t Hoff Factor.
Dissociation of sodium chloride in water: NaCl(aq) → Na⁺(aq) + Cl⁻(aq).
Answer:
B
Explanation:
Homogeneous= all particles are dissolved thoroughly
Solute= 1 gram of salt
Solvent= 500 mL water
Answer:
In physics, the kinetic energy of an object is the energy that it possesses due to its motion It is defined as the work needed to accelerate a body of a given mass from rest to its stated velocity Having gained this energy during its acceleration the body maintains this kinetic energy unless its speed changes
Example:
A semi-truck travelling down the road
A river flowing at a certain speed
Covalent compounds
All the best