pH stands for
the power of hydrogen. pH that ranges form 1-6.9 are acid substances. At pH 1 -
2.9, the substance is highly acidic which will have the color from red to red - orange. At pH 3 - 4, the substance is mildly
acidic and the color range is from red - orange to orange. At pH 4.1 – 6.9, the substance is weakly acidic and the color range is from orange to yellow. At pH 7, it is
neutral and it is green in color. At pH 7.1-14, it is basic. At pH 7.1 - 10.9, the substance is weakly
basic the color range is from green to blue. At pH 11 - 13, the substance is mildly basic and the color range is from blue to purple. At pH 13.1 – 14, the
substance is highly basic and the color range is from purple to light purple.
Answer:
1. The pressure will be 32 atm, twice the initial pressure.
2. The pressure will be 1.83 atm, one third of the initial pressure.
Explanation:
Boyle's law is one of the gas laws that relates the volume and pressure of a certain quantity of gas kept at a constant temperature.
This law says that "The volume occupied by a given gaseous mass at constant temperature is inversely proportional to pressure." This means that if the pressure increases, the volume decreases, while if the pressure decreases, the volume increases.
Boyle's law is expressed mathematically as:
Pressure * Volume = constant
or P * V = k
Ahora es posible suponer que tienes un cierto volumen de gas V1 que se encuentra a una presión P1 al comienzo del experimento. Si varias el volumen de gas hasta un nuevo valor V2, entonces la presión cambiará a P2, y se cumplirá:
P1*V1=P2*V2
1. In this case:
- P1= 16 atm
- V1
- P2= ?
- V2= V1÷2=
because the volume is halved.
So:
16 atm*V1= P2* 
Solving:
=P2
16 atm*2= P2
32 atm= P2
<u><em>The pressure will be 32 atm, twice the initial pressure.</em></u>
2. Now
- P1= 5.5 atm
- V1
- P2= ?
- V2= V1*3 because the volume is tripled.
So:
5.5 atm*V1= P2* V1*3
Solving:
=P2
= P2
1.83 atm= P2
<u><em>The pressure will be 1.83 atm, one third of the initial pressure.</em></u>
Answer:
a. pH = 2 b. pH = 3 c. pH = 1 d. Unanswerable
Explanation:
pH = -log[H+] OR pH = -log{H3O+]
and inversely
pOH = -log[OH-]
1. Determine what substance you are working with, (acid/base)
2. Determine whether or not that acid or base is strong or weak.
a. 1.0 x 10^-2M HCl
HCl is a strong acid, therefore it will dissociate completely into H+ and Cl- with all ions going to the H+, therefore, the concentration of HCl and concentration of H+ are going to be equal, meaning we simply take the negative logarithm of the concentration of HCl and that would equal pH
pH = -log[H+]
pH = -log(1.0x10^-2)
pH = 2
b. 1.0 x 10^-3M HNO3
HNO3 like part a, is a strong acid, therefore it would simply require you to take the negative logarithm of the concentration of the compound itself, to find its pH.
pH = -log[H+]
pH = -log(1.0 x 10^-3)
pH = 3
c. 1.0 x 10^-1M HI
Like the previous parts, HI is a strong acid
pH = -log[H+]
pH = -log(0.10)
pH = 1
d. HB isn't an element, nor is it a compound so that would be unanswerable.