The answer is 267.93 g
Molar mass of CaBr2 is the sum of atomic masses of Ca and Br:
Mr(CaBr2) = Ar(Ca) + 2Ar(Br)
Ar(Ca) = 40 g/mol
Ar(Br) = 79.9 g/mol
Mr(CaBr2) = 40 + 2 * 79.9 = 199.8 g/mol
The percentage of Br in CaBr2 is:
2Ar(Br) / Mr(CaBr2) * 100 = 2 * 79.9 / 199.8 * 100 = 79.98%
Now make a proportion:
x g in 79.98%
335 g in 100%
x : 79.98% = 335 g : 100%
x = 79.98% * 335 g : 100%
x = 267.93 g
Answer:
40km/hr
Explanation:
Speed = Distance ÷ Time and since they both have different units we have to change one of them. Therefore if we change 30 minutes to half an hour we say 20km ÷ ¹/2
Just like how heat moves from a region of higher
temperature to a region of lower temperature, molecules also tend to move from
a region of higher concentration to a region of lower concentration. This is
called natural diffusion and is naturally happening to reach stability.
The answer is D, far apart and have weak attractive forces between them. The ideal gas means that the volume of molecule and the forces between them can be ignored.