1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
cricket20 [7]
3 years ago
5

Good Morning. Can you help me on this question please?

Engineering
2 answers:
AnnyKZ [126]3 years ago
8 0

Answer:

b

Explanation:

MatroZZZ [7]3 years ago
7 0

Answer:

The correct answer is C

Explanation:

because sound waves travel through solids fastest.

You might be interested in
java Write a program that simulates tossing a coin. Prompt the user for how many times to toss the coin. Code a method with no p
max2010maxim [7]

Answer:

The solution code is written in Java.

  1. public class Main {
  2.    public static void main(String[] args) {
  3.        Scanner inNum = new Scanner(System.in);
  4.        System.out.print("Enter number of toss: ");
  5.        int num = inNum.nextInt();
  6.        for(int i=0; i < num; i++){
  7.            System.out.println(toss());
  8.        }
  9.    }
  10.    public static String toss(){
  11.        String option[] = {"heads", "tails"};
  12.        Random rand = new Random();
  13.        return option[rand.nextInt(2)];
  14.    }
  15. }

Explanation:

Firstly, we create a function <em>toss()</em> with no parameter but will return a string (Line 14). Within the function body, create an option array with two elements, "heads" and "tails" (Line 15). Next create a Random object (Line 16) and use <em>nextInt()</em> method to get random value either 0 or 1. Please note we need to pass the value of 2 into <em>nextInx() </em>method to ensure the random value generated is either 0 or 1.  We use this generate random value as an index of <em>option </em>array and return either "heads" or "tails" as output (Line 17).

In the main program, we create Scanner object and use it to prompt user to input an number for how many times to toss the coin (Line 6 - 7). Next, we use the input num to control how many times a for loop should run (Line 9). In each round of the loop, call the function <em>toss() </em>and print the output to terminal (Line 10).  

4 0
4 years ago
Read 2 more answers
Five bolts are used in the connection between the axial member and the support. The ultimate shear strength of the bolts is 320
lesya [120]

Answer:

The minimum allowable bolt diameter required to support an applied load of P = 450 kN is 45.7 milimeters.

Explanation:

The complete statement of this question is "Five bolts are used in the connection between the axial member and the support. The ultimate shear strength of the bolts is 320 MPa, and a factor of safety of 4.2 is required with respect to fracture. Determine the minimum allowable bolt diameter required to support an applied load of P = 450 kN"

Each bolt is subjected to shear forces. In this case, safety factor is the ratio of the ultimate shear strength to maximum allowable shear stress. That is to say:

n = \frac{S_{uts}}{\tau_{max}}

Where:

n - Safety factor, dimensionless.

S_{uts} - Ultimate shear strength, measured in pascals.

\tau_{max} - Maximum allowable shear stress, measured in pascals.

The maximum allowable shear stress is consequently cleared and computed: (n = 4.2, S_{uts} = 320\times 10^{6}\,Pa)

\tau_{max} = \frac{S_{uts}}{n}

\tau_{max} = \frac{320\times 10^{6}\,Pa}{4.2}

\tau_{max} = 76.190\times 10^{6}\,Pa

Since each bolt has a circular cross section area and assuming the shear stress is not distributed uniformly, shear stress is calculated by:

\tau_{max} = \frac{4}{3} \cdot \frac{V}{A}

Where:

\tau_{max} - Maximum allowable shear stress, measured in pascals.

V - Shear force, measured in kilonewtons.

A - Cross section area, measured in square meters.

As connection consist on five bolts, shear force is equal to a fifth of the applied load. That is:

V = \frac{P}{5}

V = \frac{450\,kN}{5}

V = 90\,kN

The minimum allowable cross section area is cleared in the shearing stress equation:

A = \frac{4}{3}\cdot \frac{V}{\tau_{max}}

If V = 90\,kN and \tau_{max} = 76.190\times 10^{3}\,kPa, the minimum allowable cross section area is:

A = \frac{4}{3} \cdot \frac{90\,kN}{76.190\times 10^{3}\,kPa}

A = 1.640\times 10^{-3}\,m^{2}

The minimum allowable cross section area can be determined in terms of minimum allowable bolt diameter by means of this expression:

A = \frac{\pi}{4}\cdot D^{2}

The diameter is now cleared and computed:

D = \sqrt{\frac{4}{\pi}\cdot A}

D =\sqrt{\frac{4}{\pi}\cdot (1.640\times 10^{-3}\,m^{2})

D = 0.0457\,m

D = 45.7\,mm

The minimum allowable bolt diameter required to support an applied load of P = 450 kN is 45.7 milimeters.

5 0
3 years ago
Discuss the applications of numerical weather forecasting​
olchik [2.2K]

Numerical weather prediction (NWP) uses mathematical models of the atmosphere and oceans to predict the weather based on current weather conditions. Though first attempted in the 1920s, it was not until the advent of computer simulation in the 1950s that numerical weather predictions produced realistic results. A number of global and regional forecast models are run in different countries worldwide, using current weather observations relayed from radiosondes, weather satellites and other observing systems as inputs.
3 0
3 years ago
Amanda and Tyler opened a business that specializes in shipping liquids, such as milk, juice, and water, in cylindrical containe
USPshnik [31]

Answer:

circleType.h

#ifndef circleType_H

#define circleType_H

class circleType

{

public:

void print();

void setRadius(double r);

//Function to set the radius.

//Postcondition: if (r >= 0) radius = r;

// otherwise radius = 0;

double getRadius();

//Function to return the radius.

//Postcondition: The value of radius is returned.

double area();

//Function to return the area of a circle.

//Postcondition: Area is calculated and returned.

double circumference();

//Function to return the circumference of a circle.

//Postcondition: Circumference is calculated and returned.

circleType(double r = 0);

//Constructor with a default parameter.

//Radius is set according to the parameter.

//The default value of the radius is 0.0;

//Postcondition: radius = r;

private:

double radius;

};

#endif

circleTypeImpl.cpp

#include <iostream>

#include "circleType.h"

using namespace std;

void circleType::print()

{

cout << "Radius = " << radius

<< ", area = " << area()

<< ", circumference = " << circumference();

}

void circleType::setRadius(double r)

{

if (r >= 0)

radius = r;

else

radius = 0;

}

double circleType::getRadius()

{

return radius;

}

double circleType::area()

{

return 3.1416 * radius * radius;

}

double circleType::circumference()

{

return 2 * 3.1416 * radius;

}

circleType::circleType(double r)

{

setRadius(r);

}

cylinderType.h

#ifndef cylinderType_H

#define cylinderType_H

#include "circleType.h"

class cylinderType: public circleType

{

public:

void print();

void setHeight(double);

double getHeight();

double volume();

double area();

//returns surface area

cylinderType(double = 0, double = 0);

private:

double height;

};

#endif

cylinderTypeImpl.cpp

#include <iostream>

#include "circleType.h"

#include "cylinderType.h"

using namespace std;

cylinderType::cylinderType(double r, double h)

: circleType(r)

{

setHeight(h);

}

void cylinderType::print()

{

cout << "Radius = " << getRadius()

<< ", height = " << height

<< ", surface area = " << area()

<< ", volume = " << volume();

}

void cylinderType::setHeight(double h)

{

if (h >= 0)

height = h;

else

height = 0;

}

double cylinderType::getHeight()

{

return height;

}

double cylinderType::area()

{

return 2 * 3.1416 * getRadius() * (getRadius() + height);

}

double cylinderType::volume()

{

return 3.1416 * getRadius() * getRadius() * height;

}

main.cpp

#include <iostream>

#include <iomanip>

using namespace std;

#include "cylinderType.h"

int main()

{

double radius,height;

double shippingCostPerLi,paintCost,shippingCost=0.0;

 

cout << fixed << showpoint;

cout << setprecision(2);

cout<<"Enter the radius :";

cin>>radius;

 

cout<<"Enter the Height of the cylinder :";

cin>>height;

 

 

cout<<"Enter the shipping cost per liter :$";

cin>>shippingCostPerLi;

 

 

//Creating an instance of CylinderType by passing the radius and height as arguments

cylinderType ct(radius,height);

 

double surfaceArea=ct.area();

double vol=ct.volume();

 

 

shippingCost+=vol*28.32*shippingCostPerLi;

 

char ch;

 

cout<<"Do you want the paint the container (y/n)?";

cin>>ch;

if(ch=='y' || ch=='Y')

{

cout<<"Enter the paint cost per sq foot :$";

cin>>paintCost;    

shippingCost+=surfaceArea*paintCost;    

}    

cout<<"Total Shipping Cost :$"<<shippingCost<<endl;

 

return 0;

}

3 0
3 years ago
Convert 250 lb·ft to N.m. Express your answer using three significant figures.
vfiekz [6]

Answer:

It will be equivalent to 338.95 N-m

Explanation:

We have to convert 250 lb-ft to N-m

We know that 1 lb = 4.45 N

So foe converting from lb to N we have to multiply with 4.45

So 250 lb = 250×4.45 =125 N

And we know that 1 feet = 0.3048 meter

Now we have to convert 250 lb-ft to N-m

So 250lb-ft=250\times 4.45N\times 0.348M=338.95N-m

So 250 lb-ft = 338.95 N-m

6 0
3 years ago
Other questions:
  • A thin-walled tube with a diameter of 6 mm and length of 20 m is used to carry exhaust gas from a smoke stack to the laboratory
    7·1 answer
  • You’ve experienced convection cooling if you’ve ever extended your hand out the window of a moving vehicle or into a flowing wat
    6·1 answer
  • A lake with constant volume 1.1 x 10^6 m^3 is fed by a stream with a non-conservative pollutant of 2.3 mg/L and flow rate 35 m^3
    14·1 answer
  • Power is a fundamental dimension. a) True b) False
    15·1 answer
  • Which of the following is not an example of heat generation? a)- Exothermic chemical reaction in a solid b)- Endothermic Chemica
    15·1 answer
  • Your new team is working hard, but they are all less experienced than you and don't complete their tasks as quickly.What would y
    8·1 answer
  • Which of the following is an example of a social need?
    5·1 answer
  • A bronze bushing 60 mm in outer diameter and 40 mm in inner diameter is to be pressed into a hollow steel cylinder of 120-mm out
    8·1 answer
  • Write down about the water source selection criteria​
    9·1 answer
  • Hello, I have a question, I would be glad if you can help.
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!