1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
luda_lava [24]
3 years ago
14

Consider a steam turbine, with inflow at 500oC and 7.9 MPa. The machine has a total-to-static efficiency ofηts=0.91, and the pre

ssure at the outflow is 16kPa. Power extracted by the turbine is 38 MW. Assuming heat transfer and kinetic energy in the machine is negligible, find the mass flow rate and static enthalpy at the outflow.
Engineering
1 answer:
sergiy2304 [10]3 years ago
3 0

Answer: \dot m_{in} = 23.942 \frac{kg}{s}, \dot H_{out} = 39632.62 kW

Explanation:

Since there is no information related to volume flow to and from turbine, let is assume that volume flow at inlet equals to \dot V = 1 \frac{m^{3}}{s}. Turbine is a steady-flow system modelled by using Principle of Mass Conservation and First Law of Thermodynamics:

Principle of Mass Conservation

\dot m_{in} - \dot m_{out} = 0

First Law of Thermodynamics

- \dot W_{out} + \eta\cdot (\dot m_{in} \dot h_{in} - \dot m_{out} \dot h_{out}) = 0

This 2 x 2 System can be reduced into one equation as follows:

-\dot W_{out} + \eta \cdot \dot m \cdot ( h_{in}- h_{out})=0

The water goes to the turbine as Superheated steam and goes out as saturated vapor or a liquid-vapor mix. Specific volume and specific enthalpy at inflow are required to determine specific enthalpy at outflow and mass flow rate, respectively. Property tables are a practical form to get information:

Inflow (Superheated Steam)

\nu_{in} = 0.041767 \frac{m^{3}}{kg} \\h_{in} = 3399.5 \frac{kJ}{kg}

The mass flow rate can be calculated by using this expression:

\dot m_{in} =\frac{\dot V_{in}}{\nu_{in}}

\dot m_{in} = 23.942 \frac{kg}{s}

Afterwards, the specific enthalpy at outflow is determined by isolating it from energy balance:

h_{out} =h_{in}-\frac{\dot W_{out}}{\eta \cdot \dot m}

h_{out} = 1655.36 \frac{kJ}{kg}

The enthalpy rate at outflow is:

\dot H_{out} = \dot m \cdot h_{out}

\dot H_{out} = 39632.62 kW

You might be interested in
Initialize the tuple team_names with the strings 'Rockets', 'Raptors', 'Warriors', and 'Celtics' (The top-4 2018 NBA teams at th
Drupady [299]

Answer:

#Initialise a tuple

team_names = ('Rockets','Raptors','Warriors','Celtics')

print(team_names[0])

print(team_names[1])

print(team_names[2])

print(team_names[3])

Explanation:

The Python code illustrates or printed out the tuple team names at the end of a season.

The code displayed is a function that will display these teams as an output from the program.

4 0
3 years ago
Military glorification through mosaics, relief carvings and triumphant arches are often associated with?
emmasim [6.3K]

Military glorification through mosaics, relief carvings and triumphant arches are often associated with roman architectural monument and is the correct choice.

<h3>What is a Monument?</h3>

This can be defined as a structure which is usually large and is used to commemorate the history of an influential person. This helps to serve as an example and also a reminder as to why the performance of good deeds are important

The use of military glorification through mosaics, relief carvings and triumphant arches were also often used by the Romans in other to commemorate war victories and the succession of a new ruler which is known as the emperor.

Read more about Roman monuments here brainly.com/question/15786258

#SPJ1

8 0
2 years ago
a buyer can purchase 70 screwdrivers ten 4-inch length twelve 6 inch length twenty 8-inch length are needed. how many heavy 24-i
jasenka [17]

Answer:

28 , 24-inch screwdrivers

Explanation:

The total number of screwdrivers that can be purchased is = 70

4 - inch length screwdrivers = 10

6- inch length screwdrivers = 12

8- inch length screwdrivers = 20

Total = 20 +12 +10 = 42

Remaining = 70-42 = 28

So, heavy 24-inch screwdrivers = 28

3 0
3 years ago
g Let the charges start infinitely far away and infinitely far apart. They are placed at (6 cm, 0) and (0, 3 cm), respectively,
irina1246 [14]

Answer:

a) V =10¹¹*(1.5q₁ + 3q₂)

b) U = 1.34*10¹¹q₁q₂

Explanation:

Given

x₁ = 6 cm

y₁ = 0 cm

x₂ = 0 cm

y₂ = 3 cm

q₁ = unknown value in Coulomb

q₂ = unknown value in Coulomb

A) V₁ = Kq₁/r₁

where   r₁ = √((6-0)²+(0-0)²)cm = 6 cm = 0.06 m

V₁ = 9*10⁹q₁/(0.06) = 1.5*10¹¹q₁

V₂ = Kq₂/r₂

where   r₂ = √((0-0)²+(3-0)²)cm = 3 cm = 0.03 m

V₂ = 9*10⁹q₂/(0.03) = 3*10¹¹q₂

The electric potential due to the two charges at the origin is

V = ∑Vi = V₁ + V₂ = 1.5*10¹¹q₁ + 3*10¹¹q₂ = 10¹¹*(1.5q₁ + 3q₂)

B) The electric potential energy associated with the system, relative to their infinite initial positions, can be obtained as follows

U = Kq₁q₂/r₁₂

where

r₁₂ = √((0-6)²+(3-0)²)cm = √45 cm = 3√5 cm = (3√5/100) m

then

U = 9*10⁹q₁q₂/(3√5/100)

⇒ U = 1.34*10¹¹q₁q₂

5 0
3 years ago
Steam enters a turbine steadily at 7 MPa and 600°C with a velocity of 60 m/s and leaves at 25 kPa with a quality of 95 percent.
Rufina [12.5K]

Answer:

a) \dot m = 16.168\,\frac{kg}{s}, b) v_{out} = 680.590\,\frac{m}{s}, c) \dot W_{out} = 18276.307\,kW

Explanation:

A turbine is a steady-state devices which transforms fluid energy into mechanical energy and is modelled after the Principle of Mass Conservation and First Law of Thermodynamics, whose expressions are described hereafter:

Mass Balance

\frac{v_{in}\cdot A_{in}}{\nu_{in}} - \frac{v_{out}\cdot A_{out}}{\nu_{out}} = 0

Energy Balance

-q_{loss} - w_{out} + h_{in} - h_{out} = 0

Specific volumes and enthalpies are obtained from property tables for steam:

Inlet (Superheated Steam)

\nu_{in} = 0.055665\,\frac{m^{3}}{kg}

h_{in} = 3650.6\,\frac{kJ}{kg}

Outlet (Liquid-Vapor Mix)

\nu_{out} = 5.89328\,\frac{m^{3}}{kg}

h_{out} = 2500.2\,\frac{kJ}{kg}

a) The mass flow rate of the steam is:

\dot m = \frac{v_{in}\cdot A_{in}}{\nu_{in}}

\dot m = \frac{\left(60\,\frac{m}{s} \right)\cdot (0.015\,m^{2})}{0.055665\,\frac{m^{3}}{kg} }

\dot m = 16.168\,\frac{kg}{s}

b) The exit velocity of steam is:

\dot m = \frac{v_{out}\cdot A_{out}}{\nu_{out}}

v_{out} = \frac{\dot m \cdot \nu_{out}}{A_{out}}

v_{out} = \frac{\left(16.168\,\frac{kg}{s} \right)\cdot \left(5.89328\,\frac{m^{3}}{kg} \right)}{0.14\,m^{2}}

v_{out} = 680.590\,\frac{m}{s}

c) The power output of the steam turbine is:

\dot W_{out} = \dot m \cdot (-q_{loss} + h_{in}-h_{out})

\dot W_{out} = \left(16.168\,\frac{kg}{s} \right)\cdot \left(-20\,\frac{kJ}{kg} + 3650.6\,\frac{kJ}{kg} - 2500.2\,\frac{kJ}{kg}\right)

\dot W_{out} = 18276.307\,kW

6 0
3 years ago
Other questions:
  • Small droplets of carbon tetrachloride at 68 °F are formed with a spray nozzle. If the average diameter of the droplets is 200 u
    10·1 answer
  • Consider a Mach 4.5 airflow at a pressure of 1.25 atm. We want to slow this flow to a subsonic speed through a system of shock w
    15·1 answer
  • An op-amp is connected in an inverting configuration with R1 = 1kW and R2 = 10kW, and a load resistor connected at the output, R
    9·1 answer
  • A rod of length L lies along the x axis with its left end at the origin. It has a nonuniform charge density λ = αx, where α is a
    14·2 answers
  • Air at 20 C and 1 atm flows over a flat plate at 35 m/s. The plate is 75 cm long and is maintained at 60 с. Assuming unit depth
    8·1 answer
  • A 1200-kg car moving at 20 km/h is accelerated
    5·1 answer
  • I NEED HELP ASAP WILL AWARD BRAINLIEST
    8·2 answers
  • La iluminación de la superficie de un patio amplio es 1600 lx cuando el ángulo de elevación del sol 53°. Calcular la iluminación
    15·1 answer
  • In-------process the hot drawn bar or rod is pulled through the die.
    7·1 answer
  • What person at the construction worksite keeps workers safe from asbestos exposure?
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!