1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
luda_lava [24]
3 years ago
14

Consider a steam turbine, with inflow at 500oC and 7.9 MPa. The machine has a total-to-static efficiency ofηts=0.91, and the pre

ssure at the outflow is 16kPa. Power extracted by the turbine is 38 MW. Assuming heat transfer and kinetic energy in the machine is negligible, find the mass flow rate and static enthalpy at the outflow.
Engineering
1 answer:
sergiy2304 [10]3 years ago
3 0

Answer: \dot m_{in} = 23.942 \frac{kg}{s}, \dot H_{out} = 39632.62 kW

Explanation:

Since there is no information related to volume flow to and from turbine, let is assume that volume flow at inlet equals to \dot V = 1 \frac{m^{3}}{s}. Turbine is a steady-flow system modelled by using Principle of Mass Conservation and First Law of Thermodynamics:

Principle of Mass Conservation

\dot m_{in} - \dot m_{out} = 0

First Law of Thermodynamics

- \dot W_{out} + \eta\cdot (\dot m_{in} \dot h_{in} - \dot m_{out} \dot h_{out}) = 0

This 2 x 2 System can be reduced into one equation as follows:

-\dot W_{out} + \eta \cdot \dot m \cdot ( h_{in}- h_{out})=0

The water goes to the turbine as Superheated steam and goes out as saturated vapor or a liquid-vapor mix. Specific volume and specific enthalpy at inflow are required to determine specific enthalpy at outflow and mass flow rate, respectively. Property tables are a practical form to get information:

Inflow (Superheated Steam)

\nu_{in} = 0.041767 \frac{m^{3}}{kg} \\h_{in} = 3399.5 \frac{kJ}{kg}

The mass flow rate can be calculated by using this expression:

\dot m_{in} =\frac{\dot V_{in}}{\nu_{in}}

\dot m_{in} = 23.942 \frac{kg}{s}

Afterwards, the specific enthalpy at outflow is determined by isolating it from energy balance:

h_{out} =h_{in}-\frac{\dot W_{out}}{\eta \cdot \dot m}

h_{out} = 1655.36 \frac{kJ}{kg}

The enthalpy rate at outflow is:

\dot H_{out} = \dot m \cdot h_{out}

\dot H_{out} = 39632.62 kW

You might be interested in
Why do I eat Takis please
sammy [17]

Answer:

because they taste good :)

7 0
1 year ago
Read 2 more answers
..................................................
Scorpion4ik [409]
..................................................
3 0
3 years ago
Read 2 more answers
What is the one thing that Zeus loathes the most? What did he do when he caught humans committing this act? What parallels to an
mel-nik [20]

Answer:

ares

Explanation:

He refer ares as the God that he hate the most

8 0
3 years ago
Suppose the country of Bangladesh wants a low interest loan to invest in the building of infrastructure. Which international org
musickatia [10]

Answer:

C. UNDP or World Bank.

Explanation:

Suppose the country of Bangladesh wants a low interest loan to invest in the building of infrastructure. The international organizations which Bangladesh would most likely turn to are UNDP or World Bank.

3 0
3 years ago
A plate (A-C) is connected to steelflat bars by pinsat A and B. Member A-E consists of two 6mm by 25mm parallel flat bars. At C,
juin [17]

Answer:

stress_ac = 5.333 MPa

shear stress_c = 1.763 MPa

Explanation:

Given:

- The missing figure is in the attachment.

- The dimensions of member AC = ( 6 x 25 ) mm x 2

- The diameter of the pin d = 19 mm

- Load at point A is P = 2 kN

Find:

-  Find the axial stress in AE and the shear stress in pin C.

Solution:

- The stress in member AE can be calculated using component of force P along the member AE  as follows:

                                    stress_ac = P*cos(Q) / A_ae

Where, Angle Q: A_E_B   and A_ac: cross sectional area of member AE.

                                    cos(Q) = 4 / 5   ..... From figure ( trigonometry )

                                    A_ae = 0.006*0.025*2 = 3*10^-4 m^2

Hence,

                                    stress_ae = 2*(4/5) / 3*10^-4

                                    stress_ae = 5.333 MPa

- The force at pin C can be evaluated by taking moments about C equal zero:

                                   (M)_c = P*6 - F_eb*3

                                      0 = P*6 - F_eb*3

                                      F_eb = 0.5*P

- Sum of horizontal forces for member AC is zero:

                                      P - F_eb - F_c = 0

                                      F_c = 0.5*P

- The shear stress of double shear bolt is given by an expression:

                                     shear stress = shear force / 2*A_pin

Where, The area of the pin C is:

                                     A_pin = pi*d^2 / 4

                                     A_pin = pi*0.019^2 / 4 = 2.8353*10^-4 m^2

Hence,

                                     shear stress = 0.5*P / 2*A_pin

                                     shear stress = 0.5*2 / 2*2.8353*10^-4

                                    shear stress = 1.763 MPa

7 0
3 years ago
Other questions:
  • The hot and cold inlet temperatures to a concentric tube heat exchanger are Th,i = 200°C, Tc,i = 100°C, respectively. The outlet
    10·1 answer
  • Hey, I have a question, I was thinking that if you have engineering skills or drawing skill you could help me to start a project
    15·1 answer
  • a vehicle is in her repair with a complaint at for heating output during testing and diagnosing air is found to be trapped in th
    15·1 answer
  • How long should the shafts remain in the furnace to achieve a desired centerline temperature of 800K? 2) Determine the temperatu
    5·1 answer
  • Where do greywater pipes generally feed into?
    14·1 answer
  • What kind of analysis would be conducted to identify project costs?
    11·1 answer
  • The electron concentration in silicon at T = 300 K is given by
    14·1 answer
  • For two different air velocities, the Nusselt number for two different diameter cylinders in cross flow is the same. The average
    6·1 answer
  • What are the BENEFITS and RISKS of using automobiles?
    10·1 answer
  • How does sea navigation work?
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!