Answer:
critical stress required for the propagation is 27.396615 ×
N/m²
Explanation:
given data
specific surface energy = 0.90 J/m²
modulus of elasticity E = 393 GPa = 393 ×
N/m²
internal crack length = 0.6 mm
to find out
critical stress required for the propagation
solution
we will apply here critical stress formula for propagation of internal crack
( σc ) =
.....................1
here E is modulus of elasticity and γs is specific surface energy and a is half length of crack i.e 0.3 mm = 0.3 ×
m
so now put value in equation 1 we get
( σc ) =
( σc ) =
( σc ) = 27.396615 ×
N/m²
so critical stress required for the propagation is 27.396615 ×
N/m²
Third one
15,000,000 ohms because M=10^6
The watts that are consumed is 80 watts.
<h3>What power factor?</h3>
The term power factor has to do with the measure of the efficiency of the use of energy. Recall that power is defined as the rate of doing work. The magnitude of the power factor shows the extent to which the power is used.
Now, to obtain the watts are consumed in a circuit having a power factor of 0. 2 if the input is 100 vac at 4 amperes we have; V × I × PF = 100V × 4A × 0.2 = 80 watts.
Learn more about power factor:brainly.com/question/10634193
#SPJ4
Boats float because the gravity is acting down on it and the buoyant force is acting up on the ship.