1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
luda_lava [24]
3 years ago
14

Consider a steam turbine, with inflow at 500oC and 7.9 MPa. The machine has a total-to-static efficiency ofηts=0.91, and the pre

ssure at the outflow is 16kPa. Power extracted by the turbine is 38 MW. Assuming heat transfer and kinetic energy in the machine is negligible, find the mass flow rate and static enthalpy at the outflow.
Engineering
1 answer:
sergiy2304 [10]3 years ago
3 0

Answer: \dot m_{in} = 23.942 \frac{kg}{s}, \dot H_{out} = 39632.62 kW

Explanation:

Since there is no information related to volume flow to and from turbine, let is assume that volume flow at inlet equals to \dot V = 1 \frac{m^{3}}{s}. Turbine is a steady-flow system modelled by using Principle of Mass Conservation and First Law of Thermodynamics:

Principle of Mass Conservation

\dot m_{in} - \dot m_{out} = 0

First Law of Thermodynamics

- \dot W_{out} + \eta\cdot (\dot m_{in} \dot h_{in} - \dot m_{out} \dot h_{out}) = 0

This 2 x 2 System can be reduced into one equation as follows:

-\dot W_{out} + \eta \cdot \dot m \cdot ( h_{in}- h_{out})=0

The water goes to the turbine as Superheated steam and goes out as saturated vapor or a liquid-vapor mix. Specific volume and specific enthalpy at inflow are required to determine specific enthalpy at outflow and mass flow rate, respectively. Property tables are a practical form to get information:

Inflow (Superheated Steam)

\nu_{in} = 0.041767 \frac{m^{3}}{kg} \\h_{in} = 3399.5 \frac{kJ}{kg}

The mass flow rate can be calculated by using this expression:

\dot m_{in} =\frac{\dot V_{in}}{\nu_{in}}

\dot m_{in} = 23.942 \frac{kg}{s}

Afterwards, the specific enthalpy at outflow is determined by isolating it from energy balance:

h_{out} =h_{in}-\frac{\dot W_{out}}{\eta \cdot \dot m}

h_{out} = 1655.36 \frac{kJ}{kg}

The enthalpy rate at outflow is:

\dot H_{out} = \dot m \cdot h_{out}

\dot H_{out} = 39632.62 kW

You might be interested in
What are the main differences between pipefitters and plumbers? (Select all that apply.)
romanna [79]

Answer:

pipefitters design systems whereas plumbers maintain systems

8 0
3 years ago
What is the output of a system with the transfer function s/(s + 3)^2 and subject to a unit step input at time t = 0?
Dominik [7]

Answer:

0

Explanation:

output =transfer function H(s) ×input U(s)

here H(s)=\frac{s}{(s+3)^2}

U(s)=\frac{1}{s} for unit step function

output =H(s)×U(s)

=\frac{s}{(s+3)^2}×\frac{1}{s}

=\frac{1}{(s+3)^2}

taking inverse laplace of output

output=t×e^{-3t}

at t=0 putting the value of t=0 in output

output =0

3 0
4 years ago
The Fisher effect says that _______ . Group of answer choices the nominal interest rate adjusts one for one with the inflation r
Greeley [361]

Answer:

what wrong subject

Explanation:

7 0
3 years ago
How does a 2.5 MW wind turbine costing $ 4 million compare to a 5-kw wind turbine $3 /W? a) Same $/w b) Smaller $/w c) Larger $/
My name is Ann [436]
MW means megawatt, and one megawatt is a million Watts.
The 2.5 MW turbine is 4/2.5=1.6 $/w
Answer B
4 0
3 years ago
What does a peak flow meter allow you to assess?
Alex Ar [27]

Answer:

  peak flow and any engineering considerations related thereto

Explanation:

It should be no surprise that a peak flow meter will report peak flow, sometimes with important maximum-value, time-constant, or bandwidth limitations. There are many engineering issues related to flow rates. A peak flow meter can allow you to assess those issues with respect to the flows actually encountered.

Peak flow can allow you to assess adequacy of flow and whether there may be blockages or impediments to flow that reduce peak levels below expected values. An appropriate peak flow meter can help you assess the length of time that peak flow can be maintained, and whether that delivers sufficient volume.

It can also allow you to assess whether appropriate accommodation is made for unexpectedly high flow rates. (Are buffers or overflow tanks of sufficient size? Is there adequate protection against possible erosion? Is there adequate support where flow changes direction?)

3 0
3 years ago
Other questions:
  • Problem 4.041 SI Refrigerant 134a enters an insulated compressor operating at steady state as saturated vapor at -26oC with a vo
    8·1 answer
  • Define what a glass transition is and what happens to a polymer because of it
    13·1 answer
  • What is the angular velocity (in rad/s) of a body rotating at N r.p.m.?
    13·1 answer
  • 4 main causes of erosion
    12·1 answer
  • A/an_ Oscilloscope uses a cathode ray tube and displays all voltages.
    8·1 answer
  • What types of issues MAY occur to slow or prevent the best outcome?
    14·1 answer
  • In the long run, if the firm decides to keep output at its initial level, what will it likely do? Stay on SRATC3 but decrease to
    15·1 answer
  • Code for XOR with two input logic gate
    8·1 answer
  • Identify the right components for gsm architecture that consists of the hardware or physical equipment such as digital signal pr
    12·1 answer
  • In order to live and grow, bacteria need moisture, food, the right temperature, and ______? Fill in the blank
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!