Answer:
(Option B)
Explanation:
The absolute pressure of the air-filled tank is:


Answer:
The tube surface temperature immediately after installation is 120.4°C and after prolonged service is 110.8°C
Explanation:
The properties of water at 100°C and 1 atm are:
pL = 957.9 kg/m³
pV = 0.596 kg/m³
ΔHL = 2257 kJ/kg
CpL = 4.217 kJ/kg K
uL = 279x10⁻⁶Ns/m²
KL = 0.68 W/m K
σ = 58.9x10³N/m
When the water boils on the surface its heat flux is:

For copper-water, the properties are:
Cfg = 0.0128
The heat flux is:
qn = 0.9 * 18703.42 = 16833.078 W/m²

The tube surface temperature immediately after installation is:
Tinst = 100 + 20.4 = 120.4°C
For rough surfaces, Cfg = 0.0068. Using the same equation:
ΔT = 10.8°C
The tube surface temperature after prolonged service is:
Tprolo = 100 + 10.8 = 110.8°C
Answer:

Explanation:
The first thing we will do is convert the units. Miles per hour to meters per second.


Performing the operations

Now, we will use the acceleration formula

Where v = speed and t = time
Substituting the values of 

Answer:
Yes
Explanation:
As we know that octane number resist the engine from knocking.If knocking can prevent that automatically the performance of engine will increases.If octane number is 100 then it means that knocking tendency in the engine is zero.So higher the octane number better will the performance of the engine.
Generally octane number is 87 but for premier gasoline is 92 or 93.
So we can say that if octane number is 93 then car will give better performance