5/2055 classes displayed there’s Nooooob changes
Answer:
The growth of crack formation in a corrosive environment.
Explanation:
Answer:

Explanation:
From the question we are told that:
Velocity of water 
Height=?
Generally, the equation for Water Velocity is mathematically given by

Therefore Height h is given as



The question is incomplete. The complete question is :
The solid rod shown is fixed to a wall, and a torque T = 85N?m is applied to the end of the rod. The diameter of the rod is 46mm .
When the rod is circular, radial lines remain straight and sections perpendicular to the axis do not warp. In this case, the strains vary linearly along radial lines. Within the proportional limit, the stress also varies linearly along radial lines. If point A is located 12 mm from the center of the rod, what is the magnitude of the shear stress at that point?
Solution :
Given data :
Diameter of the rod : 46 mm
Torque, T = 85 Nm
The polar moment of inertia of the shaft is given by :


J = 207.6 
So the shear stress at point A is :



Therefore, the magnitude of the shear stress at point A is 4913.29 MPa.
Answer:
1791 secs ≈ 29.85 minutes
Explanation:
( Initial temperature of slab ) T1 = 300° C
temperature of water ( Ts ) = 25°C
T2 ( final temp of slab ) = 50°C
distance between slab and water jet = 25 mm
<u>Determine how long it will take to reach T2</u>
First calculate the thermal diffusivity
∝ = 50 / ( 7800 * 480 ) = 1.34 * 10^-5 m^2/s
<u>next express Temp as a function of time </u>
T( 25 mm , t ) = 50°C
next calculate the time required for the slab to reach 50°C at a distance of 25mm
attached below is the remaining part of the detailed solution