Answer:
114.86%
Explanation:
In both cases, there is a vertical force equal to the sprinter's weight:
Fy = mg
When running in a circle, there is an additional centripetal force:
Fx = mv²/r
The net force is found with Pythagorean theorem:
F² = Fx² + Fy²
F² = (mv²/r)² + (mg)²
F² = m² ((v²/r)² + g²)
F = m √((v²/r)² + g²)
Compared to just the vertical force:
F / Fy
m √((v²/r)² + g²) / mg
√((v²/r)² + g²) / g
Given v = 12 m/s, r = 26 m, and g = 9.8 m/s²:
√((12²/26)² + 9.8²) / 9.8
1.1486
The force is about 114.86% greater (round as needed).
Because the atoms and molecules all have different properties
Answer:
magnitude of v = 2.5 m/s, and in the same direction as the initial velocity of the 5 kg ball.
Explanation:
We use conservation of linear momentum in an elastic collision to solve for the unknown velocity v:
Pi = Pf
5 kg * 5 m/s + 10 kg * 0 m/s = 5 kg * 0 m/s + 10 kg * v
25 kg m/s = 10 kg * v
v = 25/10 m/s
v = 2.5 m/s
and in the same direction as the initial velocity of the 5 kg ball.
Answer: Option (a) is the correct answer.
Explanation:
Sunspots are defined as the dark and cooler areas on the surface of the Earth. A sunspot is present in a region known as photosphere.
Temperature of a sunspot is about 3,800 degrees Kelvin whereas photosphere has a temperature of about 5,800 degree kelvin.
Thus, we can conclude that out of the given options, the statement they are areas of the sun that are "burnt out" is false about sunspots.