Answer:
the magnitude and the direction of the total magnetic field is 0.4 Am² antiparallel to the area vector
Explanation:
Given that:
The area vector of a square loop has 5 numbers of turns i.e n = 5
each with side length = 0.2 m
Current I = 2 A
uniform magnetic field = 50.0 T
Now; the magnitude of the total magnetic field B is calculated as :
B = IA
where;
I = current
A = area ( n × l²)
B = I ( n × l²)
B = 2 × 5 × 0.2²
B = 0.4 Am²
The direction of the magnetic moment is antiparallel to the area vector;
Hence ; the magnitude and the direction of the total magnetic field is 0.4 Am² antiparallel to the area vector
Answer:
A. A potential energy function can be specified for a conservative force.
TRUE
because there is no loss of energy in conservative type of forces.
B. A nonconservative force permits a two-way conversion between kinetic and potential energies.
FALSE
It is not true because energy is not conserved in non-conservative forces.
C. The work done by a nonconservative force depends on the path taken.
TRUE
It depends on total path length while in conservative it only depends on initial and final state
D. A potential energy function can be specified for a nonconservative force.
FALSE
Since energy is not stored in non-conservative forces so it is not defined for non conservative forces
E. A conservative force permits a two-way conversion between kinetic and potential energies.
TRUE
Work done against conservative forces is stored in form of potential energy so it is possible to have two way conversion.
F. The work done by a conservative force depends on the path taken.
FALSE
Conservative force work depends only on initial and final state
<span>P= work/time and work is = to force x distance so its 500x4 =2000joules
and 2000/4 =500 watts</span>
Probably the earth traveling around the sun