1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
andrey2020 [161]
3 years ago
11

To understand the concept of intensity; the relationship between the power of the source and the intensity of the wave; and the

dependence of intensity on distance.Since waves transfer energy from one point to another, one can define the power of a wave as the rate at which the wave transports energy. The intensity of a wave, in contrast, is the power relative to a certain surface. Consider a wave traveling across a surface perpendicular to the direction of propagation. The intensity Iof the wave is defined as the ratio of the power P of the wave to the area A of that surface:I=PA.Note that the surface may be real (physical, like an eardrum or a windowpane) or mathematical. Quite frequently, we will be interested in the intensity produced by a relatively small source at a relatively large distance. If the source emits waves uniformly in all possible directions (produces spherical waves), the formula given here makes it possible to find the intensity at a distance r from the source:I=P/4?r^2.Note that, in all parts of this problem, assume that the source generates spherical waves, so that this intensity formula is applicable.Intensity is measured in watts per square meter (W/m^2). All the information presented here is pertinent to any kind of wave. In this problem, we will be focusing on sound waves.A popular car stereo has four speakers, each rated at 60 W. In answering the following questions, assume that the speakers produce sound at their maximum power.A:Find the intensity I of the sound waves produced by one 60-Wspeaker at a distance of 1.0 m.Express your answer numerically in watts per square meter. Use two significant figures.B:Find the intensity I of the sound waves produced by one 60-Wspeaker at a distance of 1.5 m.Express your answer numerically in watts per square meter. Use two significant figures.C:Find the intensity I of the sound waves produced by four 60-Wspeakers as heard by the driver. Assume that the driver is located 1.0 m from each of the two front speakers and 1.5 m from each of the two rear speakers.Express your answer numerically in watts per meter squared.The threshold of hearing is defined as the minimum discernible intensity of the sound. It is approximately 10^?12W/m^2. Find the distance d from the car at which the sound from the stereo can still be discerned. Assume that the windows are rolled down and that each speaker actually produces 0.06 W of sound, as suggested in the last follow-up comment.
Physics
1 answer:
frez [133]3 years ago
4 0

Answer:

a.  <em>4.77  </em>W/m^{2}

b. 2.122 W/m^{2}

c. <em>13.78</em> W/m^{2}

d. <em>69 km</em>

Explanation:

a.

power P of speaker = 60 W

distance d of speaker = 1.0 m

intensity I of speaker = P/4πd^{2}

I = 60/(4 x 3.142 x 1^{2}) = 60/12.568

Intensity = <em>4.77  </em>W/m^{2}

b.

at a distance of 1.5 m, intensity will be

I = P/4πd^{2}

I = 60/(4 x 3.142 x 1.5^{2}) = 60/28.278

Intensity = 2.122 W/m^{2}

c.

combined intensity of the two front speakers will be 2 x 4.77 = 9.54 W/m^{2}

combined intensity of the two back speaker will be 2 x 2.122 = 4.244 W/m^{2}

<em>total sound intensity perceived by the driver will be the superimposition of these four speakers.</em>

I = 9.54 + 4.244 =<em> 13.78</em> W/m^{2}

d.

Minimum discernible intensity of sound = 10^{-12} W/m^{2}

each speaker produces 0.06 W of power.

<em>We assume that each speaker spreads outward evenly.</em>

from<em> I = P/4π</em>d^{2}<em>,</em>

d = \sqrt{\frac{P}{4*\pi*I } }

d = \sqrt{\frac{0.06} {4*\pi*10^{-12 } } = 69094.35 m ≅ <em>69 km</em>

You might be interested in
Que es la friccion <br> Cual es la primera ley de newton
lidiya [134]

Answer:

huh?...................

5 0
3 years ago
A certain car traveling at 97 km/h can stop in 47 m on a level road find the coefficient of friction
IrinaVladis [17]

The coefficient of friction between the road and the car's tire is determined as 0.78.

<h3>Acceleration of the car</h3>

The acceleration of the car is calculated as follows;

v² = u² - 2as

0 = u² - 2as

a = u²/2s

where;

  • u is the initial velocity = 97 km/h = 26.94 m/s

a = (26.94)²/(2 x 47)

a = 7.72 m/s²

<h3>Coefficient of friction</h3>

μ = a/g

μ = (7.72)/9.8

μ = 0.78

Learn more about coefficient of friction here: brainly.com/question/14121363

#SPJ1

5 0
2 years ago
I NEED THIS ASAP!!! A ball is thrown straight up with an initial velocity of 4.40 m/s. Assuming there is no air friction, what i
Lilit [14]

Answer:

I think it is 80m/s

Explanation:

d = ½ g t2

  = ½ (10 m/s2) (4 s)2

  = (5 m/s2) (16 s2)

  = 80 ms

75% sure

Hope this helps!!!

5 0
3 years ago
A 500 kg table with 4 legs rests on solid flat ground. I place 3 books on the center of the table with masses of 10 kg, 20 kg an
BARSIC [14]

Answer:

1,373.4 N

Explanation:

The mass of the table acts at the centre in addition to the books since that is the centre of gravity of the table.

Mass of books will be 10kg+20kg+30kg=60 kg

Total mass of table and books will be 500kg+60kg=560 kg

This mass is evenly distributed into the four legs hence 560kg/4 legs=140 kg per leg

Force is product of mass and acceleration due to gravity hence F=gm

Taking g as 9.81 m/s2 then

F=140*9.81=1,373.4 N

Therefore, rhe normal force is equivalent to 1,373.4 N

6 0
3 years ago
A standing wave pattern is created on a string with mass density μ = 3.4 × 10-4 kg/m. A wave generator with frequency f = 61 Hz
uranmaximum [27]

Answer:

1) λ = 0.413 m , 2)v = 25,213 m / s , 3)  T = 0.216 N , 4) m = 22.04 10-3 kg

Explanation:

1) The resonance occurs when the traveling wave bounces at the ends and the two waves are added, the ends as they are fixed have a node, the wavelength and the length of the string are related

         λ = 2L / n               n = 1, 2, 3 ...

In this case L = 0.62 m and n = 3

Let's calculate

        λ = 2 0.62 / 3

        λ = 0.413 m

2) the velocity related to wavelength and frequency

      v =  λ f

      v = 0.413 61

      v = 25,213 m / s

3) let's use the equation

     v = √T /μ

     T = v² μ

     T = 25,213² 3.4 10⁻⁴

     T = 0.216 N

4) the rope tension is proportional to the hanging weight

      T-W = 0

     T = W

    W = m g

    m = W / g

    m = 0.216 / 9.8

    m = 22.04 10-3 kg

5) n = 2

     λ = 2 0.62 / 2

     λ = 0.62 m

6) v =  λ f

     v = 0.62 61

     v = 37.82 m / s

7) T = v² μ

   T = 37.82² 3.4 10⁻⁴

   T = 0.486 N

8) m = W / g

   m = 0.486 / 9.8

   m = 49.62 10⁻³ kg

9) n = 1

    λ = 2 0.62

    λ = 1.24 m

    v = 1.24 61

    v = 75.64 m / s

    T = v² miu

    T = 75.64² 3.4 10⁻⁴

    T = 2.572 10⁻² N

    m = 2.572 10⁻² / 9.8

    m = 262.4 10⁻³ kg

5 0
3 years ago
Other questions:
  • A solid spherical conductor has a radius of 12 cm. The electric field at 24 from the center of the sphere has a magnitude of 640
    9·1 answer
  • A cannonball fired with an initial speed of 40 m/s and a launch angle of 30 degrees from a cliff that is 25m tall.
    12·1 answer
  • A 300 MHz electromagnetic wave in air (medium 1) is normally incident on the planar boundary of a lossless dielectric medium wit
    15·1 answer
  • A garden hose with a diameter of 0.64 in has water flowing in it with a speed of 0.46 m/s and a pressure of 1.9 atmospheres. At
    12·1 answer
  • How long will a trip take in hours of you travel 450kmat an average speed of 80 km/hr
    9·1 answer
  • Which methods of conservation are considered controversial in Virginia? Check all that apply.
    13·1 answer
  • Suppose, the same angular momentum is transferred to two rotating bodies of different moment of inertia , how will you compare t
    14·1 answer
  • If it is known that a motor battery has an input voltage of 12V and a capacity of 6 Ah, how much power and resistor value is req
    7·1 answer
  • PLEASE HELPP!!! I NEED ANSWERS!!!
    11·1 answer
  • A 10 ohms, a 7 ohms and a 14 ohms resistor are connected in series with a 24 V battery. Calculate the equivalent resistance. Ans
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!