The molecular geometry of a molecule with a core atom that has five areas of electron density and precisely one lone pair of electrons is called a disphenoidal or seesaw molecular geometry.
What is meant by disphenoidal or seesaw molecular geometry?
- Four bonds are made to an atom in the center of a disphenoidal or seesaw-shaped molecular structure, which has overall C2v structural symmetry. The fact that it resembles a playground seesaw is how it got the moniker "seesaw." Tetrahedral or, less frequently, square planar geometry is produced when four bonds to a center atom are present.
- The core atom of a molecule with a steric number of 5 and bonds to 4 additional elements and 1 lone pair is said to be in the seesaw geometry.
Learn more about geometry here:
brainly.com/question/16178099
#SPJ4
Among ¹⁴⁰₅₅Cs and ¹³³₅₅Cs, <u>¹³³₅₅Cs</u> is more stable.
<h3>Briefly explained</h3>
Let's review the criteria that are used to determine a stable isotope. A stable isotope will have more neutrons than protons with a neutron to proton ratio somewhere between one and 1.52 On the high atomic number, we're up to 152 at low atomic numbers were closer to one. More stable isotopes have an even number of protons. And neutrons.
And stable isotopes have their proton or neutron number equal to one of these magic numbers. So if we have season one, It has 85 Protons are start 85 neutrons And 55 protons. So we have a neutron to proton ratio of 155 for CCM 1 33. We have 78 neutrons and 55 protons for a neutron to proton ratio of 1.42. 155 is a little high for z equal to 55.
Both of these are also odd. So ¹⁴⁰₅₅Cs is the least stable. ¹³³₅₅Cs is the most stable.
Learn more about stable isotopes
brainly.com/question/2028971
#SPJ4
Answer:
the pH of HCOOH solution is 2.33
Explanation:
The ionization equation for the given acid is written as:

Let's say the initial concentration of the acid is c and the change in concentration x.
Then, equilibrium concentration of acid = (c-x)
and the equilibrium concentration for each of the product would be x
Equilibrium expression for the above equation would be:
![\Ka= \frac{[H^+][HCOO^-]}{[HCOOH]}](https://tex.z-dn.net/?f=%5CKa%3D%20%5Cfrac%7B%5BH%5E%2B%5D%5BHCOO%5E-%5D%7D%7B%5BHCOOH%5D%7D)

From given info, equilibrium concentration of the acid is 0.12
So, (c-x) = 0.12
hence,

Let's solve this for x. Multiply both sides by 0.12

taking square root to both sides:

Now, we have got the concentration of ![[H^+] .](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%20.)
![[H^+] = 0.00465 M](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%20%3D%200.00465%20M)
We know that, ![pH=-log[H^+]](https://tex.z-dn.net/?f=pH%3D-log%5BH%5E%2B%5D)
pH = -log(0.00465)
pH = 2.33
Hence, the pH of HCOOH solution is 2.33.