First convert grams to moles
using molar mass of butane that is 58.1 g
3.50g C4H10 x (1 mol
C4H10)/(58.1g C4H10) = 0.06024 mol C4H10 <span>
<span>Now convert moles to molecules by using Avogadro’s number
0.06024 mol C4H10 x (6.022x10^23 molecules C4H10)/(1 mol
C4H10) = 3.627x10^22 molecules C4H10
And there are 4 carbon atoms in 1 molecule of butane, so use
the following ratio:
3.627 x 10^22 molecules C4H10 x (4 atoms C)/(1 molecule
C4H10)
<span>= 1.45 x 10^23 atoms of carbon are present</span></span></span>
Answer: 1.25 miles per minute
Explanation:
Average speed is the rate of change of total distance covered per unit time.
i.e Average speed = (Total distance / Time taken)
Total distance covered = (25miles + 40 miles + 70 miles + 15 miles)
= 150 miles
Total time taken = ( 15 minutes + 30 minutes + 1 hour + 15 minutes) = 120 minutes
Since 60 minutes = 1 hour, the total time taken is 120 minutes
Now, apply Average speed = (Total distance / Time taken)
= (150 miles / 120 minutes)
= 1.25 miles per minutes
Thus, Joseph drove with an average speed of 1.25 miles per minute.
Here are my answers since I examined the questions.
Question 1.
No! as a matter of fact, the Rock cycle has no Beginning and No End it's an infinite loop.
Question 2.
The Rock cycle can happen in both ways such as, Volcanic rock melts and cool downs happen quite quickly as in others happen slower.
Question 3.
The 4 Major Steps of the rate of change are, Weathering, Transportation, Deposition, And Compaction.
Question 4.
The main factor for this one would be: The mineral composition of the Parent Rock.
Question 5.
The Parent Rock and the Pressure/temperature conditions.
These all my answers for this project, Good Luck.
MO Diagram of C₂⁻ is shown below,
Bond order is calculated as,
Bond Order = [# of e⁻s in BMO]-[#of e⁻s in ABMO] / 2
Where,
BMO = Bonding Molecular Orbital
ABMO = Anti-Bonding Molecular Orbital
Putting values,
Bond Order = [9]-[4] / 2
Bond Order = 5 / 2
Bond Order = 2.5